| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg2.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cycsubg2.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubg2.f |  |-  F = ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 4 |  | cycsubg2.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 5 |  | snssg |  |-  ( A e. X -> ( A e. y <-> { A } C_ y ) ) | 
						
							| 6 | 5 | bicomd |  |-  ( A e. X -> ( { A } C_ y <-> A e. y ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( G e. Grp /\ A e. X ) -> ( { A } C_ y <-> A e. y ) ) | 
						
							| 8 | 7 | rabbidv |  |-  ( ( G e. Grp /\ A e. X ) -> { y e. ( SubGrp ` G ) | { A } C_ y } = { y e. ( SubGrp ` G ) | A e. y } ) | 
						
							| 9 | 8 | inteqd |  |-  ( ( G e. Grp /\ A e. X ) -> |^| { y e. ( SubGrp ` G ) | { A } C_ y } = |^| { y e. ( SubGrp ` G ) | A e. y } ) | 
						
							| 10 | 1 | subgacs |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) | 
						
							| 11 | 10 | acsmred |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( Moore ` X ) ) | 
						
							| 12 |  | snssi |  |-  ( A e. X -> { A } C_ X ) | 
						
							| 13 | 4 | mrcval |  |-  ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) = |^| { y e. ( SubGrp ` G ) | { A } C_ y } ) | 
						
							| 14 | 11 12 13 | syl2an |  |-  ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = |^| { y e. ( SubGrp ` G ) | { A } C_ y } ) | 
						
							| 15 | 1 2 3 | cycsubg |  |-  ( ( G e. Grp /\ A e. X ) -> ran F = |^| { y e. ( SubGrp ` G ) | A e. y } ) | 
						
							| 16 | 9 14 15 | 3eqtr4d |  |-  ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = ran F ) |