Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubg.x |
|- X = ( Base ` G ) |
2 |
|
cycsubg.t |
|- .x. = ( .g ` G ) |
3 |
|
cycsubg.f |
|- F = ( x e. ZZ |-> ( x .x. A ) ) |
4 |
1 2
|
mulgcl |
|- ( ( G e. Grp /\ x e. ZZ /\ A e. X ) -> ( x .x. A ) e. X ) |
5 |
4
|
3expa |
|- ( ( ( G e. Grp /\ x e. ZZ ) /\ A e. X ) -> ( x .x. A ) e. X ) |
6 |
5
|
an32s |
|- ( ( ( G e. Grp /\ A e. X ) /\ x e. ZZ ) -> ( x .x. A ) e. X ) |
7 |
6 3
|
fmptd |
|- ( ( G e. Grp /\ A e. X ) -> F : ZZ --> X ) |
8 |
7
|
frnd |
|- ( ( G e. Grp /\ A e. X ) -> ran F C_ X ) |
9 |
7
|
ffnd |
|- ( ( G e. Grp /\ A e. X ) -> F Fn ZZ ) |
10 |
|
1z |
|- 1 e. ZZ |
11 |
|
fnfvelrn |
|- ( ( F Fn ZZ /\ 1 e. ZZ ) -> ( F ` 1 ) e. ran F ) |
12 |
9 10 11
|
sylancl |
|- ( ( G e. Grp /\ A e. X ) -> ( F ` 1 ) e. ran F ) |
13 |
12
|
ne0d |
|- ( ( G e. Grp /\ A e. X ) -> ran F =/= (/) ) |
14 |
|
df-3an |
|- ( ( m e. ZZ /\ n e. ZZ /\ A e. X ) <-> ( ( m e. ZZ /\ n e. ZZ ) /\ A e. X ) ) |
15 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
16 |
1 2 15
|
mulgdir |
|- ( ( G e. Grp /\ ( m e. ZZ /\ n e. ZZ /\ A e. X ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
17 |
14 16
|
sylan2br |
|- ( ( G e. Grp /\ ( ( m e. ZZ /\ n e. ZZ ) /\ A e. X ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
18 |
17
|
anass1rs |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
19 |
|
zaddcl |
|- ( ( m e. ZZ /\ n e. ZZ ) -> ( m + n ) e. ZZ ) |
20 |
19
|
adantl |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( m + n ) e. ZZ ) |
21 |
|
oveq1 |
|- ( x = ( m + n ) -> ( x .x. A ) = ( ( m + n ) .x. A ) ) |
22 |
|
ovex |
|- ( ( m + n ) .x. A ) e. _V |
23 |
21 3 22
|
fvmpt |
|- ( ( m + n ) e. ZZ -> ( F ` ( m + n ) ) = ( ( m + n ) .x. A ) ) |
24 |
20 23
|
syl |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) = ( ( m + n ) .x. A ) ) |
25 |
|
oveq1 |
|- ( x = m -> ( x .x. A ) = ( m .x. A ) ) |
26 |
|
ovex |
|- ( m .x. A ) e. _V |
27 |
25 3 26
|
fvmpt |
|- ( m e. ZZ -> ( F ` m ) = ( m .x. A ) ) |
28 |
27
|
ad2antrl |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` m ) = ( m .x. A ) ) |
29 |
|
oveq1 |
|- ( x = n -> ( x .x. A ) = ( n .x. A ) ) |
30 |
|
ovex |
|- ( n .x. A ) e. _V |
31 |
29 3 30
|
fvmpt |
|- ( n e. ZZ -> ( F ` n ) = ( n .x. A ) ) |
32 |
31
|
ad2antll |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` n ) = ( n .x. A ) ) |
33 |
28 32
|
oveq12d |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) |
34 |
18 24 33
|
3eqtr4d |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) = ( ( F ` m ) ( +g ` G ) ( F ` n ) ) ) |
35 |
|
fnfvelrn |
|- ( ( F Fn ZZ /\ ( m + n ) e. ZZ ) -> ( F ` ( m + n ) ) e. ran F ) |
36 |
9 19 35
|
syl2an |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) e. ran F ) |
37 |
34 36
|
eqeltrrd |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) |
38 |
37
|
anassrs |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) /\ n e. ZZ ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) |
39 |
38
|
ralrimiva |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) |
40 |
|
oveq2 |
|- ( v = ( F ` n ) -> ( ( F ` m ) ( +g ` G ) v ) = ( ( F ` m ) ( +g ` G ) ( F ` n ) ) ) |
41 |
40
|
eleq1d |
|- ( v = ( F ` n ) -> ( ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
42 |
41
|
ralrn |
|- ( F Fn ZZ -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
43 |
9 42
|
syl |
|- ( ( G e. Grp /\ A e. X ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
44 |
43
|
adantr |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) |
45 |
39 44
|
mpbird |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F ) |
46 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
47 |
1 2 46
|
mulgneg |
|- ( ( G e. Grp /\ m e. ZZ /\ A e. X ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
48 |
47
|
3expa |
|- ( ( ( G e. Grp /\ m e. ZZ ) /\ A e. X ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
49 |
48
|
an32s |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
50 |
|
znegcl |
|- ( m e. ZZ -> -u m e. ZZ ) |
51 |
50
|
adantl |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> -u m e. ZZ ) |
52 |
|
oveq1 |
|- ( x = -u m -> ( x .x. A ) = ( -u m .x. A ) ) |
53 |
|
ovex |
|- ( -u m .x. A ) e. _V |
54 |
52 3 53
|
fvmpt |
|- ( -u m e. ZZ -> ( F ` -u m ) = ( -u m .x. A ) ) |
55 |
51 54
|
syl |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) = ( -u m .x. A ) ) |
56 |
27
|
adantl |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` m ) = ( m .x. A ) ) |
57 |
56
|
fveq2d |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( ( invg ` G ) ` ( F ` m ) ) = ( ( invg ` G ) ` ( m .x. A ) ) ) |
58 |
49 55 57
|
3eqtr4d |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) = ( ( invg ` G ) ` ( F ` m ) ) ) |
59 |
|
fnfvelrn |
|- ( ( F Fn ZZ /\ -u m e. ZZ ) -> ( F ` -u m ) e. ran F ) |
60 |
9 50 59
|
syl2an |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) e. ran F ) |
61 |
58 60
|
eqeltrrd |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) |
62 |
45 61
|
jca |
|- ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) |
63 |
62
|
ralrimiva |
|- ( ( G e. Grp /\ A e. X ) -> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) |
64 |
|
oveq1 |
|- ( u = ( F ` m ) -> ( u ( +g ` G ) v ) = ( ( F ` m ) ( +g ` G ) v ) ) |
65 |
64
|
eleq1d |
|- ( u = ( F ` m ) -> ( ( u ( +g ` G ) v ) e. ran F <-> ( ( F ` m ) ( +g ` G ) v ) e. ran F ) ) |
66 |
65
|
ralbidv |
|- ( u = ( F ` m ) -> ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F <-> A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F ) ) |
67 |
|
fveq2 |
|- ( u = ( F ` m ) -> ( ( invg ` G ) ` u ) = ( ( invg ` G ) ` ( F ` m ) ) ) |
68 |
67
|
eleq1d |
|- ( u = ( F ` m ) -> ( ( ( invg ` G ) ` u ) e. ran F <-> ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) |
69 |
66 68
|
anbi12d |
|- ( u = ( F ` m ) -> ( ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) |
70 |
69
|
ralrn |
|- ( F Fn ZZ -> ( A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) |
71 |
9 70
|
syl |
|- ( ( G e. Grp /\ A e. X ) -> ( A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) |
72 |
63 71
|
mpbird |
|- ( ( G e. Grp /\ A e. X ) -> A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) |
73 |
1 15 46
|
issubg2 |
|- ( G e. Grp -> ( ran F e. ( SubGrp ` G ) <-> ( ran F C_ X /\ ran F =/= (/) /\ A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) ) ) |
74 |
73
|
adantr |
|- ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) <-> ( ran F C_ X /\ ran F =/= (/) /\ A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) ) ) |
75 |
8 13 72 74
|
mpbir3and |
|- ( ( G e. Grp /\ A e. X ) -> ran F e. ( SubGrp ` G ) ) |
76 |
|
oveq1 |
|- ( x = 1 -> ( x .x. A ) = ( 1 .x. A ) ) |
77 |
|
ovex |
|- ( 1 .x. A ) e. _V |
78 |
76 3 77
|
fvmpt |
|- ( 1 e. ZZ -> ( F ` 1 ) = ( 1 .x. A ) ) |
79 |
10 78
|
ax-mp |
|- ( F ` 1 ) = ( 1 .x. A ) |
80 |
1 2
|
mulg1 |
|- ( A e. X -> ( 1 .x. A ) = A ) |
81 |
80
|
adantl |
|- ( ( G e. Grp /\ A e. X ) -> ( 1 .x. A ) = A ) |
82 |
79 81
|
eqtrid |
|- ( ( G e. Grp /\ A e. X ) -> ( F ` 1 ) = A ) |
83 |
82 12
|
eqeltrrd |
|- ( ( G e. Grp /\ A e. X ) -> A e. ran F ) |
84 |
75 83
|
jca |
|- ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |