| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubg.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cycsubg.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubg.f |  |-  F = ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 4 | 1 2 | mulgcl |  |-  ( ( G e. Grp /\ x e. ZZ /\ A e. X ) -> ( x .x. A ) e. X ) | 
						
							| 5 | 4 | 3expa |  |-  ( ( ( G e. Grp /\ x e. ZZ ) /\ A e. X ) -> ( x .x. A ) e. X ) | 
						
							| 6 | 5 | an32s |  |-  ( ( ( G e. Grp /\ A e. X ) /\ x e. ZZ ) -> ( x .x. A ) e. X ) | 
						
							| 7 | 6 3 | fmptd |  |-  ( ( G e. Grp /\ A e. X ) -> F : ZZ --> X ) | 
						
							| 8 | 7 | frnd |  |-  ( ( G e. Grp /\ A e. X ) -> ran F C_ X ) | 
						
							| 9 | 7 | ffnd |  |-  ( ( G e. Grp /\ A e. X ) -> F Fn ZZ ) | 
						
							| 10 |  | 1z |  |-  1 e. ZZ | 
						
							| 11 |  | fnfvelrn |  |-  ( ( F Fn ZZ /\ 1 e. ZZ ) -> ( F ` 1 ) e. ran F ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( ( G e. Grp /\ A e. X ) -> ( F ` 1 ) e. ran F ) | 
						
							| 13 | 12 | ne0d |  |-  ( ( G e. Grp /\ A e. X ) -> ran F =/= (/) ) | 
						
							| 14 |  | df-3an |  |-  ( ( m e. ZZ /\ n e. ZZ /\ A e. X ) <-> ( ( m e. ZZ /\ n e. ZZ ) /\ A e. X ) ) | 
						
							| 15 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 16 | 1 2 15 | mulgdir |  |-  ( ( G e. Grp /\ ( m e. ZZ /\ n e. ZZ /\ A e. X ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) | 
						
							| 17 | 14 16 | sylan2br |  |-  ( ( G e. Grp /\ ( ( m e. ZZ /\ n e. ZZ ) /\ A e. X ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) | 
						
							| 18 | 17 | anass1rs |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( m + n ) .x. A ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) | 
						
							| 19 |  | zaddcl |  |-  ( ( m e. ZZ /\ n e. ZZ ) -> ( m + n ) e. ZZ ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( m + n ) e. ZZ ) | 
						
							| 21 |  | oveq1 |  |-  ( x = ( m + n ) -> ( x .x. A ) = ( ( m + n ) .x. A ) ) | 
						
							| 22 |  | ovex |  |-  ( ( m + n ) .x. A ) e. _V | 
						
							| 23 | 21 3 22 | fvmpt |  |-  ( ( m + n ) e. ZZ -> ( F ` ( m + n ) ) = ( ( m + n ) .x. A ) ) | 
						
							| 24 | 20 23 | syl |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) = ( ( m + n ) .x. A ) ) | 
						
							| 25 |  | oveq1 |  |-  ( x = m -> ( x .x. A ) = ( m .x. A ) ) | 
						
							| 26 |  | ovex |  |-  ( m .x. A ) e. _V | 
						
							| 27 | 25 3 26 | fvmpt |  |-  ( m e. ZZ -> ( F ` m ) = ( m .x. A ) ) | 
						
							| 28 | 27 | ad2antrl |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` m ) = ( m .x. A ) ) | 
						
							| 29 |  | oveq1 |  |-  ( x = n -> ( x .x. A ) = ( n .x. A ) ) | 
						
							| 30 |  | ovex |  |-  ( n .x. A ) e. _V | 
						
							| 31 | 29 3 30 | fvmpt |  |-  ( n e. ZZ -> ( F ` n ) = ( n .x. A ) ) | 
						
							| 32 | 31 | ad2antll |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` n ) = ( n .x. A ) ) | 
						
							| 33 | 28 32 | oveq12d |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) = ( ( m .x. A ) ( +g ` G ) ( n .x. A ) ) ) | 
						
							| 34 | 18 24 33 | 3eqtr4d |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) = ( ( F ` m ) ( +g ` G ) ( F ` n ) ) ) | 
						
							| 35 |  | fnfvelrn |  |-  ( ( F Fn ZZ /\ ( m + n ) e. ZZ ) -> ( F ` ( m + n ) ) e. ran F ) | 
						
							| 36 | 9 19 35 | syl2an |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( F ` ( m + n ) ) e. ran F ) | 
						
							| 37 | 34 36 | eqeltrrd |  |-  ( ( ( G e. Grp /\ A e. X ) /\ ( m e. ZZ /\ n e. ZZ ) ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) | 
						
							| 38 | 37 | anassrs |  |-  ( ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) /\ n e. ZZ ) -> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) | 
						
							| 39 | 38 | ralrimiva |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) | 
						
							| 40 |  | oveq2 |  |-  ( v = ( F ` n ) -> ( ( F ` m ) ( +g ` G ) v ) = ( ( F ` m ) ( +g ` G ) ( F ` n ) ) ) | 
						
							| 41 | 40 | eleq1d |  |-  ( v = ( F ` n ) -> ( ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) | 
						
							| 42 | 41 | ralrn |  |-  ( F Fn ZZ -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) | 
						
							| 43 | 9 42 | syl |  |-  ( ( G e. Grp /\ A e. X ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F <-> A. n e. ZZ ( ( F ` m ) ( +g ` G ) ( F ` n ) ) e. ran F ) ) | 
						
							| 45 | 39 44 | mpbird |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F ) | 
						
							| 46 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 47 | 1 2 46 | mulgneg |  |-  ( ( G e. Grp /\ m e. ZZ /\ A e. X ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) | 
						
							| 48 | 47 | 3expa |  |-  ( ( ( G e. Grp /\ m e. ZZ ) /\ A e. X ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) | 
						
							| 49 | 48 | an32s |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( -u m .x. A ) = ( ( invg ` G ) ` ( m .x. A ) ) ) | 
						
							| 50 |  | znegcl |  |-  ( m e. ZZ -> -u m e. ZZ ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> -u m e. ZZ ) | 
						
							| 52 |  | oveq1 |  |-  ( x = -u m -> ( x .x. A ) = ( -u m .x. A ) ) | 
						
							| 53 |  | ovex |  |-  ( -u m .x. A ) e. _V | 
						
							| 54 | 52 3 53 | fvmpt |  |-  ( -u m e. ZZ -> ( F ` -u m ) = ( -u m .x. A ) ) | 
						
							| 55 | 51 54 | syl |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) = ( -u m .x. A ) ) | 
						
							| 56 | 27 | adantl |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` m ) = ( m .x. A ) ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( ( invg ` G ) ` ( F ` m ) ) = ( ( invg ` G ) ` ( m .x. A ) ) ) | 
						
							| 58 | 49 55 57 | 3eqtr4d |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) = ( ( invg ` G ) ` ( F ` m ) ) ) | 
						
							| 59 |  | fnfvelrn |  |-  ( ( F Fn ZZ /\ -u m e. ZZ ) -> ( F ` -u m ) e. ran F ) | 
						
							| 60 | 9 50 59 | syl2an |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( F ` -u m ) e. ran F ) | 
						
							| 61 | 58 60 | eqeltrrd |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) | 
						
							| 62 | 45 61 | jca |  |-  ( ( ( G e. Grp /\ A e. X ) /\ m e. ZZ ) -> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) | 
						
							| 63 | 62 | ralrimiva |  |-  ( ( G e. Grp /\ A e. X ) -> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) | 
						
							| 64 |  | oveq1 |  |-  ( u = ( F ` m ) -> ( u ( +g ` G ) v ) = ( ( F ` m ) ( +g ` G ) v ) ) | 
						
							| 65 | 64 | eleq1d |  |-  ( u = ( F ` m ) -> ( ( u ( +g ` G ) v ) e. ran F <-> ( ( F ` m ) ( +g ` G ) v ) e. ran F ) ) | 
						
							| 66 | 65 | ralbidv |  |-  ( u = ( F ` m ) -> ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F <-> A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F ) ) | 
						
							| 67 |  | fveq2 |  |-  ( u = ( F ` m ) -> ( ( invg ` G ) ` u ) = ( ( invg ` G ) ` ( F ` m ) ) ) | 
						
							| 68 | 67 | eleq1d |  |-  ( u = ( F ` m ) -> ( ( ( invg ` G ) ` u ) e. ran F <-> ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) | 
						
							| 69 | 66 68 | anbi12d |  |-  ( u = ( F ` m ) -> ( ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) | 
						
							| 70 | 69 | ralrn |  |-  ( F Fn ZZ -> ( A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) | 
						
							| 71 | 9 70 | syl |  |-  ( ( G e. Grp /\ A e. X ) -> ( A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) <-> A. m e. ZZ ( A. v e. ran F ( ( F ` m ) ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` ( F ` m ) ) e. ran F ) ) ) | 
						
							| 72 | 63 71 | mpbird |  |-  ( ( G e. Grp /\ A e. X ) -> A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) | 
						
							| 73 | 1 15 46 | issubg2 |  |-  ( G e. Grp -> ( ran F e. ( SubGrp ` G ) <-> ( ran F C_ X /\ ran F =/= (/) /\ A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) <-> ( ran F C_ X /\ ran F =/= (/) /\ A. u e. ran F ( A. v e. ran F ( u ( +g ` G ) v ) e. ran F /\ ( ( invg ` G ) ` u ) e. ran F ) ) ) ) | 
						
							| 75 | 8 13 72 74 | mpbir3and |  |-  ( ( G e. Grp /\ A e. X ) -> ran F e. ( SubGrp ` G ) ) | 
						
							| 76 |  | oveq1 |  |-  ( x = 1 -> ( x .x. A ) = ( 1 .x. A ) ) | 
						
							| 77 |  | ovex |  |-  ( 1 .x. A ) e. _V | 
						
							| 78 | 76 3 77 | fvmpt |  |-  ( 1 e. ZZ -> ( F ` 1 ) = ( 1 .x. A ) ) | 
						
							| 79 | 10 78 | ax-mp |  |-  ( F ` 1 ) = ( 1 .x. A ) | 
						
							| 80 | 1 2 | mulg1 |  |-  ( A e. X -> ( 1 .x. A ) = A ) | 
						
							| 81 | 80 | adantl |  |-  ( ( G e. Grp /\ A e. X ) -> ( 1 .x. A ) = A ) | 
						
							| 82 | 79 81 | eqtrid |  |-  ( ( G e. Grp /\ A e. X ) -> ( F ` 1 ) = A ) | 
						
							| 83 | 82 12 | eqeltrrd |  |-  ( ( G e. Grp /\ A e. X ) -> A e. ran F ) | 
						
							| 84 | 75 83 | jca |  |-  ( ( G e. Grp /\ A e. X ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |