Description: The cyclic subgroup generated by A is a subgroup. Deduction related to cycsubgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycsubgcld.1 | |- B = ( Base ` G ) |
|
cycsubgcld.2 | |- .x. = ( .g ` G ) |
||
cycsubgcld.3 | |- F = ( n e. ZZ |-> ( n .x. A ) ) |
||
cycsubgcld.4 | |- ( ph -> G e. Grp ) |
||
cycsubgcld.5 | |- ( ph -> A e. B ) |
||
Assertion | cycsubgcld | |- ( ph -> ran F e. ( SubGrp ` G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubgcld.1 | |- B = ( Base ` G ) |
|
2 | cycsubgcld.2 | |- .x. = ( .g ` G ) |
|
3 | cycsubgcld.3 | |- F = ( n e. ZZ |-> ( n .x. A ) ) |
|
4 | cycsubgcld.4 | |- ( ph -> G e. Grp ) |
|
5 | cycsubgcld.5 | |- ( ph -> A e. B ) |
|
6 | 1 2 3 | cycsubgcl | |- ( ( G e. Grp /\ A e. B ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |
7 | 4 5 6 | syl2anc | |- ( ph -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) |
8 | 7 | simpld | |- ( ph -> ran F e. ( SubGrp ` G ) ) |