Description: The cyclic subgroup generated by A is a subgroup. Deduction related to cycsubgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubgcld.1 | |- B = ( Base ` G ) | |
| cycsubgcld.2 | |- .x. = ( .g ` G ) | ||
| cycsubgcld.3 | |- F = ( n e. ZZ |-> ( n .x. A ) ) | ||
| cycsubgcld.4 | |- ( ph -> G e. Grp ) | ||
| cycsubgcld.5 | |- ( ph -> A e. B ) | ||
| Assertion | cycsubgcld | |- ( ph -> ran F e. ( SubGrp ` G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cycsubgcld.1 | |- B = ( Base ` G ) | |
| 2 | cycsubgcld.2 | |- .x. = ( .g ` G ) | |
| 3 | cycsubgcld.3 | |- F = ( n e. ZZ |-> ( n .x. A ) ) | |
| 4 | cycsubgcld.4 | |- ( ph -> G e. Grp ) | |
| 5 | cycsubgcld.5 | |- ( ph -> A e. B ) | |
| 6 | 1 2 3 | cycsubgcl | |- ( ( G e. Grp /\ A e. B ) -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) | 
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( ran F e. ( SubGrp ` G ) /\ A e. ran F ) ) | 
| 8 | 7 | simpld | |- ( ph -> ran F e. ( SubGrp ` G ) ) |