| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubgcyg.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | cycsubgcyg.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubgcyg.s |  |-  S = ran ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) | 
						
							| 5 |  | eqid |  |-  ( .g ` ( G |`s S ) ) = ( .g ` ( G |`s S ) ) | 
						
							| 6 |  | eqid |  |-  ( x e. ZZ |-> ( x .x. A ) ) = ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 7 | 1 2 6 | cycsubgcl |  |-  ( ( G e. Grp /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x .x. A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x .x. A ) ) ) ) | 
						
							| 8 | 7 | simpld |  |-  ( ( G e. Grp /\ A e. X ) -> ran ( x e. ZZ |-> ( x .x. A ) ) e. ( SubGrp ` G ) ) | 
						
							| 9 | 3 8 | eqeltrid |  |-  ( ( G e. Grp /\ A e. X ) -> S e. ( SubGrp ` G ) ) | 
						
							| 10 |  | eqid |  |-  ( G |`s S ) = ( G |`s S ) | 
						
							| 11 | 10 | subggrp |  |-  ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) | 
						
							| 12 | 9 11 | syl |  |-  ( ( G e. Grp /\ A e. X ) -> ( G |`s S ) e. Grp ) | 
						
							| 13 | 7 | simprd |  |-  ( ( G e. Grp /\ A e. X ) -> A e. ran ( x e. ZZ |-> ( x .x. A ) ) ) | 
						
							| 14 | 13 3 | eleqtrrdi |  |-  ( ( G e. Grp /\ A e. X ) -> A e. S ) | 
						
							| 15 | 10 | subgbas |  |-  ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) | 
						
							| 16 | 9 15 | syl |  |-  ( ( G e. Grp /\ A e. X ) -> S = ( Base ` ( G |`s S ) ) ) | 
						
							| 17 | 14 16 | eleqtrd |  |-  ( ( G e. Grp /\ A e. X ) -> A e. ( Base ` ( G |`s S ) ) ) | 
						
							| 18 | 16 | eleq2d |  |-  ( ( G e. Grp /\ A e. X ) -> ( y e. S <-> y e. ( Base ` ( G |`s S ) ) ) ) | 
						
							| 19 | 18 | biimpar |  |-  ( ( ( G e. Grp /\ A e. X ) /\ y e. ( Base ` ( G |`s S ) ) ) -> y e. S ) | 
						
							| 20 |  | simpr |  |-  ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> y e. S ) | 
						
							| 21 | 20 3 | eleqtrdi |  |-  ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> y e. ran ( x e. ZZ |-> ( x .x. A ) ) ) | 
						
							| 22 |  | oveq1 |  |-  ( x = n -> ( x .x. A ) = ( n .x. A ) ) | 
						
							| 23 | 22 | cbvmptv |  |-  ( x e. ZZ |-> ( x .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) ) | 
						
							| 24 |  | ovex |  |-  ( n .x. A ) e. _V | 
						
							| 25 | 23 24 | elrnmpti |  |-  ( y e. ran ( x e. ZZ |-> ( x .x. A ) ) <-> E. n e. ZZ y = ( n .x. A ) ) | 
						
							| 26 | 21 25 | sylib |  |-  ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> E. n e. ZZ y = ( n .x. A ) ) | 
						
							| 27 | 9 | ad2antrr |  |-  ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> S e. ( SubGrp ` G ) ) | 
						
							| 28 |  | simpr |  |-  ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> n e. ZZ ) | 
						
							| 29 | 14 | ad2antrr |  |-  ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> A e. S ) | 
						
							| 30 | 2 10 5 | subgmulg |  |-  ( ( S e. ( SubGrp ` G ) /\ n e. ZZ /\ A e. S ) -> ( n .x. A ) = ( n ( .g ` ( G |`s S ) ) A ) ) | 
						
							| 31 | 27 28 29 30 | syl3anc |  |-  ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> ( n .x. A ) = ( n ( .g ` ( G |`s S ) ) A ) ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> ( y = ( n .x. A ) <-> y = ( n ( .g ` ( G |`s S ) ) A ) ) ) | 
						
							| 33 | 32 | rexbidva |  |-  ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> ( E. n e. ZZ y = ( n .x. A ) <-> E. n e. ZZ y = ( n ( .g ` ( G |`s S ) ) A ) ) ) | 
						
							| 34 | 26 33 | mpbid |  |-  ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> E. n e. ZZ y = ( n ( .g ` ( G |`s S ) ) A ) ) | 
						
							| 35 | 19 34 | syldan |  |-  ( ( ( G e. Grp /\ A e. X ) /\ y e. ( Base ` ( G |`s S ) ) ) -> E. n e. ZZ y = ( n ( .g ` ( G |`s S ) ) A ) ) | 
						
							| 36 | 4 5 12 17 35 | iscygd |  |-  ( ( G e. Grp /\ A e. X ) -> ( G |`s S ) e. CycGrp ) |