Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubgcyg.x |
|- X = ( Base ` G ) |
2 |
|
cycsubgcyg.t |
|- .x. = ( .g ` G ) |
3 |
|
cycsubgcyg.s |
|- S = ran ( x e. ZZ |-> ( x .x. A ) ) |
4 |
|
eqid |
|- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
5 |
|
eqid |
|- ( .g ` ( G |`s S ) ) = ( .g ` ( G |`s S ) ) |
6 |
|
eqid |
|- ( x e. ZZ |-> ( x .x. A ) ) = ( x e. ZZ |-> ( x .x. A ) ) |
7 |
1 2 6
|
cycsubgcl |
|- ( ( G e. Grp /\ A e. X ) -> ( ran ( x e. ZZ |-> ( x .x. A ) ) e. ( SubGrp ` G ) /\ A e. ran ( x e. ZZ |-> ( x .x. A ) ) ) ) |
8 |
7
|
simpld |
|- ( ( G e. Grp /\ A e. X ) -> ran ( x e. ZZ |-> ( x .x. A ) ) e. ( SubGrp ` G ) ) |
9 |
3 8
|
eqeltrid |
|- ( ( G e. Grp /\ A e. X ) -> S e. ( SubGrp ` G ) ) |
10 |
|
eqid |
|- ( G |`s S ) = ( G |`s S ) |
11 |
10
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
12 |
9 11
|
syl |
|- ( ( G e. Grp /\ A e. X ) -> ( G |`s S ) e. Grp ) |
13 |
7
|
simprd |
|- ( ( G e. Grp /\ A e. X ) -> A e. ran ( x e. ZZ |-> ( x .x. A ) ) ) |
14 |
13 3
|
eleqtrrdi |
|- ( ( G e. Grp /\ A e. X ) -> A e. S ) |
15 |
10
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
16 |
9 15
|
syl |
|- ( ( G e. Grp /\ A e. X ) -> S = ( Base ` ( G |`s S ) ) ) |
17 |
14 16
|
eleqtrd |
|- ( ( G e. Grp /\ A e. X ) -> A e. ( Base ` ( G |`s S ) ) ) |
18 |
16
|
eleq2d |
|- ( ( G e. Grp /\ A e. X ) -> ( y e. S <-> y e. ( Base ` ( G |`s S ) ) ) ) |
19 |
18
|
biimpar |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. ( Base ` ( G |`s S ) ) ) -> y e. S ) |
20 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> y e. S ) |
21 |
20 3
|
eleqtrdi |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> y e. ran ( x e. ZZ |-> ( x .x. A ) ) ) |
22 |
|
oveq1 |
|- ( x = n -> ( x .x. A ) = ( n .x. A ) ) |
23 |
22
|
cbvmptv |
|- ( x e. ZZ |-> ( x .x. A ) ) = ( n e. ZZ |-> ( n .x. A ) ) |
24 |
|
ovex |
|- ( n .x. A ) e. _V |
25 |
23 24
|
elrnmpti |
|- ( y e. ran ( x e. ZZ |-> ( x .x. A ) ) <-> E. n e. ZZ y = ( n .x. A ) ) |
26 |
21 25
|
sylib |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> E. n e. ZZ y = ( n .x. A ) ) |
27 |
9
|
ad2antrr |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> S e. ( SubGrp ` G ) ) |
28 |
|
simpr |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> n e. ZZ ) |
29 |
14
|
ad2antrr |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> A e. S ) |
30 |
2 10 5
|
subgmulg |
|- ( ( S e. ( SubGrp ` G ) /\ n e. ZZ /\ A e. S ) -> ( n .x. A ) = ( n ( .g ` ( G |`s S ) ) A ) ) |
31 |
27 28 29 30
|
syl3anc |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> ( n .x. A ) = ( n ( .g ` ( G |`s S ) ) A ) ) |
32 |
31
|
eqeq2d |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) /\ n e. ZZ ) -> ( y = ( n .x. A ) <-> y = ( n ( .g ` ( G |`s S ) ) A ) ) ) |
33 |
32
|
rexbidva |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> ( E. n e. ZZ y = ( n .x. A ) <-> E. n e. ZZ y = ( n ( .g ` ( G |`s S ) ) A ) ) ) |
34 |
26 33
|
mpbid |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. S ) -> E. n e. ZZ y = ( n ( .g ` ( G |`s S ) ) A ) ) |
35 |
19 34
|
syldan |
|- ( ( ( G e. Grp /\ A e. X ) /\ y e. ( Base ` ( G |`s S ) ) ) -> E. n e. ZZ y = ( n ( .g ` ( G |`s S ) ) A ) ) |
36 |
4 5 12 17 35
|
iscygd |
|- ( ( G e. Grp /\ A e. X ) -> ( G |`s S ) e. CycGrp ) |