| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubgcyg2.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | cycsubgcyg2.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 3 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 4 |  | eqid |  |-  ( n e. ZZ |-> ( n ( .g ` G ) A ) ) = ( n e. ZZ |-> ( n ( .g ` G ) A ) ) | 
						
							| 5 | 1 3 4 2 | cycsubg2 |  |-  ( ( G e. Grp /\ A e. B ) -> ( K ` { A } ) = ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( ( G e. Grp /\ A e. B ) -> ( G |`s ( K ` { A } ) ) = ( G |`s ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) ) | 
						
							| 7 |  | eqid |  |-  ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) = ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) | 
						
							| 8 | 1 3 7 | cycsubgcyg |  |-  ( ( G e. Grp /\ A e. B ) -> ( G |`s ran ( n e. ZZ |-> ( n ( .g ` G ) A ) ) ) e. CycGrp ) | 
						
							| 9 | 6 8 | eqeltrd |  |-  ( ( G e. Grp /\ A e. B ) -> ( G |`s ( K ` { A } ) ) e. CycGrp ) |