Metamath Proof Explorer


Theorem cycsubgss

Description: The cyclic subgroup generated by an element A is a subset of any subgroup containing A . (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses cycsubg.x
|- X = ( Base ` G )
cycsubg.t
|- .x. = ( .g ` G )
cycsubg.f
|- F = ( x e. ZZ |-> ( x .x. A ) )
Assertion cycsubgss
|- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ran F C_ S )

Proof

Step Hyp Ref Expression
1 cycsubg.x
 |-  X = ( Base ` G )
2 cycsubg.t
 |-  .x. = ( .g ` G )
3 cycsubg.f
 |-  F = ( x e. ZZ |-> ( x .x. A ) )
4 2 subgmulgcl
 |-  ( ( S e. ( SubGrp ` G ) /\ x e. ZZ /\ A e. S ) -> ( x .x. A ) e. S )
5 4 3expa
 |-  ( ( ( S e. ( SubGrp ` G ) /\ x e. ZZ ) /\ A e. S ) -> ( x .x. A ) e. S )
6 5 an32s
 |-  ( ( ( S e. ( SubGrp ` G ) /\ A e. S ) /\ x e. ZZ ) -> ( x .x. A ) e. S )
7 6 3 fmptd
 |-  ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> F : ZZ --> S )
8 7 frnd
 |-  ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ran F C_ S )