Step |
Hyp |
Ref |
Expression |
1 |
|
cycsubmcmn.b |
|- B = ( Base ` G ) |
2 |
|
cycsubmcmn.t |
|- .x. = ( .g ` G ) |
3 |
|
cycsubmcmn.f |
|- F = ( x e. NN0 |-> ( x .x. A ) ) |
4 |
|
cycsubmcmn.c |
|- C = ran F |
5 |
1 2 3 4
|
cycsubm |
|- ( ( G e. Mnd /\ A e. B ) -> C e. ( SubMnd ` G ) ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
|
eqid |
|- ( G |`s C ) = ( G |`s C ) |
8 |
1 6 7
|
issubm2 |
|- ( G e. Mnd -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) ) ) |
9 |
8
|
adantr |
|- ( ( G e. Mnd /\ A e. B ) -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) ) ) |
10 |
|
simp3 |
|- ( ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) -> ( G |`s C ) e. Mnd ) |
11 |
9 10
|
syl6bi |
|- ( ( G e. Mnd /\ A e. B ) -> ( C e. ( SubMnd ` G ) -> ( G |`s C ) e. Mnd ) ) |
12 |
5 11
|
mpd |
|- ( ( G e. Mnd /\ A e. B ) -> ( G |`s C ) e. Mnd ) |
13 |
7
|
submbas |
|- ( C e. ( SubMnd ` G ) -> C = ( Base ` ( G |`s C ) ) ) |
14 |
5 13
|
syl |
|- ( ( G e. Mnd /\ A e. B ) -> C = ( Base ` ( G |`s C ) ) ) |
15 |
14
|
eqcomd |
|- ( ( G e. Mnd /\ A e. B ) -> ( Base ` ( G |`s C ) ) = C ) |
16 |
15
|
eleq2d |
|- ( ( G e. Mnd /\ A e. B ) -> ( x e. ( Base ` ( G |`s C ) ) <-> x e. C ) ) |
17 |
15
|
eleq2d |
|- ( ( G e. Mnd /\ A e. B ) -> ( y e. ( Base ` ( G |`s C ) ) <-> y e. C ) ) |
18 |
16 17
|
anbi12d |
|- ( ( G e. Mnd /\ A e. B ) -> ( ( x e. ( Base ` ( G |`s C ) ) /\ y e. ( Base ` ( G |`s C ) ) ) <-> ( x e. C /\ y e. C ) ) ) |
19 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
20 |
1 2 3 4 19
|
cycsubmcom |
|- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
21 |
5
|
adantr |
|- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> C e. ( SubMnd ` G ) ) |
22 |
7 19
|
ressplusg |
|- ( C e. ( SubMnd ` G ) -> ( +g ` G ) = ( +g ` ( G |`s C ) ) ) |
23 |
22
|
eqcomd |
|- ( C e. ( SubMnd ` G ) -> ( +g ` ( G |`s C ) ) = ( +g ` G ) ) |
24 |
23
|
oveqd |
|- ( C e. ( SubMnd ` G ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( x ( +g ` G ) y ) ) |
25 |
23
|
oveqd |
|- ( C e. ( SubMnd ` G ) -> ( y ( +g ` ( G |`s C ) ) x ) = ( y ( +g ` G ) x ) ) |
26 |
24 25
|
eqeq12d |
|- ( C e. ( SubMnd ` G ) -> ( ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
27 |
21 26
|
syl |
|- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) |
28 |
20 27
|
mpbird |
|- ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) |
29 |
28
|
ex |
|- ( ( G e. Mnd /\ A e. B ) -> ( ( x e. C /\ y e. C ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) |
30 |
18 29
|
sylbid |
|- ( ( G e. Mnd /\ A e. B ) -> ( ( x e. ( Base ` ( G |`s C ) ) /\ y e. ( Base ` ( G |`s C ) ) ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) |
31 |
30
|
ralrimivv |
|- ( ( G e. Mnd /\ A e. B ) -> A. x e. ( Base ` ( G |`s C ) ) A. y e. ( Base ` ( G |`s C ) ) ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) |
32 |
|
eqid |
|- ( Base ` ( G |`s C ) ) = ( Base ` ( G |`s C ) ) |
33 |
|
eqid |
|- ( +g ` ( G |`s C ) ) = ( +g ` ( G |`s C ) ) |
34 |
32 33
|
iscmn |
|- ( ( G |`s C ) e. CMnd <-> ( ( G |`s C ) e. Mnd /\ A. x e. ( Base ` ( G |`s C ) ) A. y e. ( Base ` ( G |`s C ) ) ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) |
35 |
12 31 34
|
sylanbrc |
|- ( ( G e. Mnd /\ A e. B ) -> ( G |`s C ) e. CMnd ) |