| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycsubmcmn.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | cycsubmcmn.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | cycsubmcmn.f |  |-  F = ( x e. NN0 |-> ( x .x. A ) ) | 
						
							| 4 |  | cycsubmcmn.c |  |-  C = ran F | 
						
							| 5 | 1 2 3 4 | cycsubm |  |-  ( ( G e. Mnd /\ A e. B ) -> C e. ( SubMnd ` G ) ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 |  | eqid |  |-  ( G |`s C ) = ( G |`s C ) | 
						
							| 8 | 1 6 7 | issubm2 |  |-  ( G e. Mnd -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( G e. Mnd /\ A e. B ) -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) ) ) | 
						
							| 10 |  | simp3 |  |-  ( ( C C_ B /\ ( 0g ` G ) e. C /\ ( G |`s C ) e. Mnd ) -> ( G |`s C ) e. Mnd ) | 
						
							| 11 | 9 10 | biimtrdi |  |-  ( ( G e. Mnd /\ A e. B ) -> ( C e. ( SubMnd ` G ) -> ( G |`s C ) e. Mnd ) ) | 
						
							| 12 | 5 11 | mpd |  |-  ( ( G e. Mnd /\ A e. B ) -> ( G |`s C ) e. Mnd ) | 
						
							| 13 | 7 | submbas |  |-  ( C e. ( SubMnd ` G ) -> C = ( Base ` ( G |`s C ) ) ) | 
						
							| 14 | 5 13 | syl |  |-  ( ( G e. Mnd /\ A e. B ) -> C = ( Base ` ( G |`s C ) ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( G e. Mnd /\ A e. B ) -> ( Base ` ( G |`s C ) ) = C ) | 
						
							| 16 | 15 | eleq2d |  |-  ( ( G e. Mnd /\ A e. B ) -> ( x e. ( Base ` ( G |`s C ) ) <-> x e. C ) ) | 
						
							| 17 | 15 | eleq2d |  |-  ( ( G e. Mnd /\ A e. B ) -> ( y e. ( Base ` ( G |`s C ) ) <-> y e. C ) ) | 
						
							| 18 | 16 17 | anbi12d |  |-  ( ( G e. Mnd /\ A e. B ) -> ( ( x e. ( Base ` ( G |`s C ) ) /\ y e. ( Base ` ( G |`s C ) ) ) <-> ( x e. C /\ y e. C ) ) ) | 
						
							| 19 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 20 | 1 2 3 4 19 | cycsubmcom |  |-  ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) | 
						
							| 21 | 5 | adantr |  |-  ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> C e. ( SubMnd ` G ) ) | 
						
							| 22 | 7 19 | ressplusg |  |-  ( C e. ( SubMnd ` G ) -> ( +g ` G ) = ( +g ` ( G |`s C ) ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( C e. ( SubMnd ` G ) -> ( +g ` ( G |`s C ) ) = ( +g ` G ) ) | 
						
							| 24 | 23 | oveqd |  |-  ( C e. ( SubMnd ` G ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( x ( +g ` G ) y ) ) | 
						
							| 25 | 23 | oveqd |  |-  ( C e. ( SubMnd ` G ) -> ( y ( +g ` ( G |`s C ) ) x ) = ( y ( +g ` G ) x ) ) | 
						
							| 26 | 24 25 | eqeq12d |  |-  ( C e. ( SubMnd ` G ) -> ( ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) | 
						
							| 27 | 21 26 | syl |  |-  ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) <-> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) ) | 
						
							| 28 | 20 27 | mpbird |  |-  ( ( ( G e. Mnd /\ A e. B ) /\ ( x e. C /\ y e. C ) ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) | 
						
							| 29 | 28 | ex |  |-  ( ( G e. Mnd /\ A e. B ) -> ( ( x e. C /\ y e. C ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) | 
						
							| 30 | 18 29 | sylbid |  |-  ( ( G e. Mnd /\ A e. B ) -> ( ( x e. ( Base ` ( G |`s C ) ) /\ y e. ( Base ` ( G |`s C ) ) ) -> ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) | 
						
							| 31 | 30 | ralrimivv |  |-  ( ( G e. Mnd /\ A e. B ) -> A. x e. ( Base ` ( G |`s C ) ) A. y e. ( Base ` ( G |`s C ) ) ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) | 
						
							| 32 |  | eqid |  |-  ( Base ` ( G |`s C ) ) = ( Base ` ( G |`s C ) ) | 
						
							| 33 |  | eqid |  |-  ( +g ` ( G |`s C ) ) = ( +g ` ( G |`s C ) ) | 
						
							| 34 | 32 33 | iscmn |  |-  ( ( G |`s C ) e. CMnd <-> ( ( G |`s C ) e. Mnd /\ A. x e. ( Base ` ( G |`s C ) ) A. y e. ( Base ` ( G |`s C ) ) ( x ( +g ` ( G |`s C ) ) y ) = ( y ( +g ` ( G |`s C ) ) x ) ) ) | 
						
							| 35 | 12 31 34 | sylanbrc |  |-  ( ( G e. Mnd /\ A e. B ) -> ( G |`s C ) e. CMnd ) |