Step |
Hyp |
Ref |
Expression |
1 |
|
cygctb.1 |
|- B = ( Base ` G ) |
2 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
3 |
1 2
|
iscyg |
|- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) |
4 |
3
|
simprbi |
|- ( G e. CycGrp -> E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) |
5 |
|
ovex |
|- ( n ( .g ` G ) x ) e. _V |
6 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( n e. ZZ |-> ( n ( .g ` G ) x ) ) |
7 |
5 6
|
fnmpti |
|- ( n e. ZZ |-> ( n ( .g ` G ) x ) ) Fn ZZ |
8 |
|
df-fo |
|- ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B <-> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) Fn ZZ /\ ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) ) |
9 |
7 8
|
mpbiran |
|- ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B <-> ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B ) |
10 |
|
omelon |
|- _om e. On |
11 |
|
onenon |
|- ( _om e. On -> _om e. dom card ) |
12 |
10 11
|
ax-mp |
|- _om e. dom card |
13 |
|
znnen |
|- ZZ ~~ NN |
14 |
|
nnenom |
|- NN ~~ _om |
15 |
13 14
|
entri |
|- ZZ ~~ _om |
16 |
|
ennum |
|- ( ZZ ~~ _om -> ( ZZ e. dom card <-> _om e. dom card ) ) |
17 |
15 16
|
ax-mp |
|- ( ZZ e. dom card <-> _om e. dom card ) |
18 |
12 17
|
mpbir |
|- ZZ e. dom card |
19 |
|
fodomnum |
|- ( ZZ e. dom card -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ ZZ ) ) |
20 |
18 19
|
mp1i |
|- ( ( G e. CycGrp /\ x e. B ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ ZZ ) ) |
21 |
|
domentr |
|- ( ( B ~<_ ZZ /\ ZZ ~~ _om ) -> B ~<_ _om ) |
22 |
15 21
|
mpan2 |
|- ( B ~<_ ZZ -> B ~<_ _om ) |
23 |
20 22
|
syl6 |
|- ( ( G e. CycGrp /\ x e. B ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) x ) ) : ZZ -onto-> B -> B ~<_ _om ) ) |
24 |
9 23
|
syl5bir |
|- ( ( G e. CycGrp /\ x e. B ) -> ( ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> B ~<_ _om ) ) |
25 |
24
|
rexlimdva |
|- ( G e. CycGrp -> ( E. x e. B ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B -> B ~<_ _om ) ) |
26 |
4 25
|
mpd |
|- ( G e. CycGrp -> B ~<_ _om ) |