Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
|- B = ( Base ` G ) |
2 |
|
iscyg.2 |
|- .x. = ( .g ` G ) |
3 |
|
iscyg3.e |
|- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
4 |
|
cyggenod.o |
|- O = ( od ` G ) |
5 |
1 2 3
|
iscyggen |
|- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
6 |
|
simplr |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> B e. Fin ) |
7 |
|
simplll |
|- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> G e. Grp ) |
8 |
|
simpr |
|- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> n e. ZZ ) |
9 |
|
simplr |
|- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> X e. B ) |
10 |
1 2
|
mulgcl |
|- ( ( G e. Grp /\ n e. ZZ /\ X e. B ) -> ( n .x. X ) e. B ) |
11 |
7 8 9 10
|
syl3anc |
|- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> ( n .x. X ) e. B ) |
12 |
11
|
fmpttd |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( n e. ZZ |-> ( n .x. X ) ) : ZZ --> B ) |
13 |
12
|
frnd |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) |
14 |
6 13
|
ssfid |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin ) |
15 |
|
hashen |
|- ( ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin /\ B e. Fin ) -> ( ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) <-> ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) ) |
16 |
14 6 15
|
syl2anc |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) <-> ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) ) |
17 |
|
eqid |
|- ( n e. ZZ |-> ( n .x. X ) ) = ( n e. ZZ |-> ( n .x. X ) ) |
18 |
1 4 2 17
|
dfod2 |
|- ( ( G e. Grp /\ X e. B ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) |
19 |
18
|
adantlr |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) |
20 |
14
|
iftrued |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) = ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) ) |
21 |
19 20
|
eqtr2d |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( O ` X ) ) |
22 |
21
|
eqeq1d |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) <-> ( O ` X ) = ( # ` B ) ) ) |
23 |
|
fisseneq |
|- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B /\ ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) |
24 |
23
|
3expia |
|- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
25 |
|
enrefg |
|- ( B e. Fin -> B ~~ B ) |
26 |
25
|
adantr |
|- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> B ~~ B ) |
27 |
|
breq1 |
|- ( ran ( n e. ZZ |-> ( n .x. X ) ) = B -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B <-> B ~~ B ) ) |
28 |
26 27
|
syl5ibrcom |
|- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) = B -> ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) ) |
29 |
24 28
|
impbid |
|- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B <-> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
30 |
6 13 29
|
syl2anc |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B <-> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
31 |
16 22 30
|
3bitr3rd |
|- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) = B <-> ( O ` X ) = ( # ` B ) ) ) |
32 |
31
|
pm5.32da |
|- ( ( G e. Grp /\ B e. Fin ) -> ( ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |
33 |
5 32
|
syl5bb |
|- ( ( G e. Grp /\ B e. Fin ) -> ( X e. E <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |