Step |
Hyp |
Ref |
Expression |
1 |
|
iscyg.1 |
|- B = ( Base ` G ) |
2 |
|
iscyg.2 |
|- .x. = ( .g ` G ) |
3 |
|
iscyg3.e |
|- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
4 |
|
cyggenod.o |
|- O = ( od ` G ) |
5 |
1 2 3
|
iscyggen |
|- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
6 |
5
|
simplbi |
|- ( X e. E -> X e. B ) |
7 |
|
eqid |
|- ( n e. ZZ |-> ( n .x. X ) ) = ( n e. ZZ |-> ( n .x. X ) ) |
8 |
1 4 2 7
|
dfod2 |
|- ( ( G e. Grp /\ X e. B ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) |
9 |
6 8
|
sylan2 |
|- ( ( G e. Grp /\ X e. E ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) |
10 |
5
|
simprbi |
|- ( X e. E -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) |
11 |
10
|
adantl |
|- ( ( G e. Grp /\ X e. E ) -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) |
12 |
11
|
eleq1d |
|- ( ( G e. Grp /\ X e. E ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin <-> B e. Fin ) ) |
13 |
11
|
fveq2d |
|- ( ( G e. Grp /\ X e. E ) -> ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) ) |
14 |
12 13
|
ifbieq1d |
|- ( ( G e. Grp /\ X e. E ) -> if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |
15 |
9 14
|
eqtrd |
|- ( ( G e. Grp /\ X e. E ) -> ( O ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |