Description: The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cygctb.1 | |- B = ( Base ` G ) |
|
cyggex.o | |- E = ( gEx ` G ) |
||
Assertion | cyggex | |- ( ( G e. CycGrp /\ B e. Fin ) -> E = ( # ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | |- B = ( Base ` G ) |
|
2 | cyggex.o | |- E = ( gEx ` G ) |
|
3 | 1 2 | cyggex2 | |- ( G e. CycGrp -> E = if ( B e. Fin , ( # ` B ) , 0 ) ) |
4 | iftrue | |- ( B e. Fin -> if ( B e. Fin , ( # ` B ) , 0 ) = ( # ` B ) ) |
|
5 | 3 4 | sylan9eq | |- ( ( G e. CycGrp /\ B e. Fin ) -> E = ( # ` B ) ) |