Metamath Proof Explorer


Theorem cyggex

Description: The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cygctb.1
|- B = ( Base ` G )
cyggex.o
|- E = ( gEx ` G )
Assertion cyggex
|- ( ( G e. CycGrp /\ B e. Fin ) -> E = ( # ` B ) )

Proof

Step Hyp Ref Expression
1 cygctb.1
 |-  B = ( Base ` G )
2 cyggex.o
 |-  E = ( gEx ` G )
3 1 2 cyggex2
 |-  ( G e. CycGrp -> E = if ( B e. Fin , ( # ` B ) , 0 ) )
4 iftrue
 |-  ( B e. Fin -> if ( B e. Fin , ( # ` B ) , 0 ) = ( # ` B ) )
5 3 4 sylan9eq
 |-  ( ( G e. CycGrp /\ B e. Fin ) -> E = ( # ` B ) )