| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cygctb.b |
|- B = ( Base ` G ) |
| 2 |
|
cygctb.c |
|- C = ( Base ` H ) |
| 3 |
1 2
|
gicen |
|- ( G ~=g H -> B ~~ C ) |
| 4 |
|
eqid |
|- if ( B e. Fin , ( # ` B ) , 0 ) = if ( B e. Fin , ( # ` B ) , 0 ) |
| 5 |
|
eqid |
|- ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) = ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) |
| 6 |
1 4 5
|
cygzn |
|- ( G e. CycGrp -> G ~=g ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> G ~=g ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) ) |
| 8 |
|
enfi |
|- ( B ~~ C -> ( B e. Fin <-> C e. Fin ) ) |
| 9 |
8
|
adantl |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> ( B e. Fin <-> C e. Fin ) ) |
| 10 |
|
hasheni |
|- ( B ~~ C -> ( # ` B ) = ( # ` C ) ) |
| 11 |
10
|
adantl |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> ( # ` B ) = ( # ` C ) ) |
| 12 |
9 11
|
ifbieq1d |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> if ( B e. Fin , ( # ` B ) , 0 ) = if ( C e. Fin , ( # ` C ) , 0 ) ) |
| 13 |
12
|
fveq2d |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) = ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) ) |
| 14 |
|
eqid |
|- if ( C e. Fin , ( # ` C ) , 0 ) = if ( C e. Fin , ( # ` C ) , 0 ) |
| 15 |
|
eqid |
|- ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) = ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) |
| 16 |
2 14 15
|
cygzn |
|- ( H e. CycGrp -> H ~=g ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) ) |
| 17 |
16
|
ad2antlr |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> H ~=g ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) ) |
| 18 |
|
gicsym |
|- ( H ~=g ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) -> ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) ~=g H ) |
| 19 |
17 18
|
syl |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> ( Z/nZ ` if ( C e. Fin , ( # ` C ) , 0 ) ) ~=g H ) |
| 20 |
13 19
|
eqbrtrd |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) ~=g H ) |
| 21 |
|
gictr |
|- ( ( G ~=g ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) /\ ( Z/nZ ` if ( B e. Fin , ( # ` B ) , 0 ) ) ~=g H ) -> G ~=g H ) |
| 22 |
7 20 21
|
syl2anc |
|- ( ( ( G e. CycGrp /\ H e. CycGrp ) /\ B ~~ C ) -> G ~=g H ) |
| 23 |
22
|
ex |
|- ( ( G e. CycGrp /\ H e. CycGrp ) -> ( B ~~ C -> G ~=g H ) ) |
| 24 |
3 23
|
impbid2 |
|- ( ( G e. CycGrp /\ H e. CycGrp ) -> ( G ~=g H <-> B ~~ C ) ) |