Metamath Proof Explorer


Theorem cyggrp

Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion cyggrp
|- ( G e. CycGrp -> G e. Grp )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` G ) = ( Base ` G )
2 eqid
 |-  ( .g ` G ) = ( .g ` G )
3 1 2 iscyg
 |-  ( G e. CycGrp <-> ( G e. Grp /\ E. x e. ( Base ` G ) ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( Base ` G ) ) )
4 3 simplbi
 |-  ( G e. CycGrp -> G e. Grp )