Description: A cyclic group is a group. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | cyggrp | |- ( G e. CycGrp -> G e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
2 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
3 | 1 2 | iscyg | |- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. ( Base ` G ) ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = ( Base ` G ) ) ) |
4 | 3 | simplbi | |- ( G e. CycGrp -> G e. Grp ) |