| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cygzn.b |
|- B = ( Base ` G ) |
| 2 |
|
cygzn.n |
|- N = if ( B e. Fin , ( # ` B ) , 0 ) |
| 3 |
|
cygzn.y |
|- Y = ( Z/nZ ` N ) |
| 4 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 5 |
|
eqid |
|- { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } |
| 6 |
1 4 5
|
iscyg2 |
|- ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) ) |
| 7 |
6
|
simprbi |
|- ( G e. CycGrp -> { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) |
| 8 |
|
n0 |
|- ( { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) <-> E. g g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
| 9 |
7 8
|
sylib |
|- ( G e. CycGrp -> E. g g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
| 10 |
|
eqid |
|- ( ZRHom ` Y ) = ( ZRHom ` Y ) |
| 11 |
|
simpl |
|- ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> G e. CycGrp ) |
| 12 |
|
simpr |
|- ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
| 13 |
|
eqid |
|- ran ( m e. ZZ |-> <. ( ( ZRHom ` Y ) ` m ) , ( m ( .g ` G ) g ) >. ) = ran ( m e. ZZ |-> <. ( ( ZRHom ` Y ) ` m ) , ( m ( .g ` G ) g ) >. ) |
| 14 |
1 2 3 4 10 5 11 12 13
|
cygznlem3 |
|- ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> G ~=g Y ) |
| 15 |
9 14
|
exlimddv |
|- ( G e. CycGrp -> G ~=g Y ) |