Step |
Hyp |
Ref |
Expression |
1 |
|
cygzn.b |
|- B = ( Base ` G ) |
2 |
|
cygzn.n |
|- N = if ( B e. Fin , ( # ` B ) , 0 ) |
3 |
|
cygzn.y |
|- Y = ( Z/nZ ` N ) |
4 |
|
cygzn.m |
|- .x. = ( .g ` G ) |
5 |
|
cygzn.l |
|- L = ( ZRHom ` Y ) |
6 |
|
cygzn.e |
|- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
7 |
|
cygzn.g |
|- ( ph -> G e. CycGrp ) |
8 |
|
cygzn.x |
|- ( ph -> X e. E ) |
9 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
10 |
9
|
adantl |
|- ( ( ph /\ B e. Fin ) -> ( # ` B ) e. NN0 ) |
11 |
|
0nn0 |
|- 0 e. NN0 |
12 |
11
|
a1i |
|- ( ( ph /\ -. B e. Fin ) -> 0 e. NN0 ) |
13 |
10 12
|
ifclda |
|- ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) e. NN0 ) |
14 |
2 13
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> N e. NN0 ) |
16 |
|
simprl |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> K e. ZZ ) |
17 |
|
simprr |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> M e. ZZ ) |
18 |
3 5
|
zndvds |
|- ( ( N e. NN0 /\ K e. ZZ /\ M e. ZZ ) -> ( ( L ` K ) = ( L ` M ) <-> N || ( K - M ) ) ) |
19 |
15 16 17 18
|
syl3anc |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( L ` K ) = ( L ` M ) <-> N || ( K - M ) ) ) |
20 |
|
cyggrp |
|- ( G e. CycGrp -> G e. Grp ) |
21 |
7 20
|
syl |
|- ( ph -> G e. Grp ) |
22 |
|
eqid |
|- ( od ` G ) = ( od ` G ) |
23 |
1 4 6 22
|
cyggenod2 |
|- ( ( G e. Grp /\ X e. E ) -> ( ( od ` G ) ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |
24 |
21 8 23
|
syl2anc |
|- ( ph -> ( ( od ` G ) ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |
25 |
24 2
|
eqtr4di |
|- ( ph -> ( ( od ` G ) ` X ) = N ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( od ` G ) ` X ) = N ) |
27 |
26
|
breq1d |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> N || ( K - M ) ) ) |
28 |
21
|
adantr |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> G e. Grp ) |
29 |
1 4 6
|
iscyggen |
|- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
30 |
29
|
simplbi |
|- ( X e. E -> X e. B ) |
31 |
8 30
|
syl |
|- ( ph -> X e. B ) |
32 |
31
|
adantr |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> X e. B ) |
33 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
34 |
1 22 4 33
|
odcong |
|- ( ( G e. Grp /\ X e. B /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |
35 |
28 32 16 17 34
|
syl112anc |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |
36 |
19 27 35
|
3bitr2d |
|- ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( L ` K ) = ( L ` M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |