Metamath Proof Explorer


Theorem cygznlem2

Description: Lemma for cygzn . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses cygzn.b
|- B = ( Base ` G )
cygzn.n
|- N = if ( B e. Fin , ( # ` B ) , 0 )
cygzn.y
|- Y = ( Z/nZ ` N )
cygzn.m
|- .x. = ( .g ` G )
cygzn.l
|- L = ( ZRHom ` Y )
cygzn.e
|- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B }
cygzn.g
|- ( ph -> G e. CycGrp )
cygzn.x
|- ( ph -> X e. E )
cygzn.f
|- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. )
Assertion cygznlem2
|- ( ( ph /\ M e. ZZ ) -> ( F ` ( L ` M ) ) = ( M .x. X ) )

Proof

Step Hyp Ref Expression
1 cygzn.b
 |-  B = ( Base ` G )
2 cygzn.n
 |-  N = if ( B e. Fin , ( # ` B ) , 0 )
3 cygzn.y
 |-  Y = ( Z/nZ ` N )
4 cygzn.m
 |-  .x. = ( .g ` G )
5 cygzn.l
 |-  L = ( ZRHom ` Y )
6 cygzn.e
 |-  E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B }
7 cygzn.g
 |-  ( ph -> G e. CycGrp )
8 cygzn.x
 |-  ( ph -> X e. E )
9 cygzn.f
 |-  F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. )
10 fvexd
 |-  ( ( ph /\ m e. ZZ ) -> ( L ` m ) e. _V )
11 ovexd
 |-  ( ( ph /\ m e. ZZ ) -> ( m .x. X ) e. _V )
12 fveq2
 |-  ( m = M -> ( L ` m ) = ( L ` M ) )
13 oveq1
 |-  ( m = M -> ( m .x. X ) = ( M .x. X ) )
14 1 2 3 4 5 6 7 8 9 cygznlem2a
 |-  ( ph -> F : ( Base ` Y ) --> B )
15 14 ffund
 |-  ( ph -> Fun F )
16 9 10 11 12 13 15 fliftval
 |-  ( ( ph /\ M e. ZZ ) -> ( F ` ( L ` M ) ) = ( M .x. X ) )