Description: Lemma for cygzn . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cygzn.b | |- B = ( Base ` G ) |
|
cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
||
cygzn.y | |- Y = ( Z/nZ ` N ) |
||
cygzn.m | |- .x. = ( .g ` G ) |
||
cygzn.l | |- L = ( ZRHom ` Y ) |
||
cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
cygzn.g | |- ( ph -> G e. CycGrp ) |
||
cygzn.x | |- ( ph -> X e. E ) |
||
cygzn.f | |- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. ) |
||
Assertion | cygznlem2 | |- ( ( ph /\ M e. ZZ ) -> ( F ` ( L ` M ) ) = ( M .x. X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygzn.b | |- B = ( Base ` G ) |
|
2 | cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
|
3 | cygzn.y | |- Y = ( Z/nZ ` N ) |
|
4 | cygzn.m | |- .x. = ( .g ` G ) |
|
5 | cygzn.l | |- L = ( ZRHom ` Y ) |
|
6 | cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
7 | cygzn.g | |- ( ph -> G e. CycGrp ) |
|
8 | cygzn.x | |- ( ph -> X e. E ) |
|
9 | cygzn.f | |- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. ) |
|
10 | fvexd | |- ( ( ph /\ m e. ZZ ) -> ( L ` m ) e. _V ) |
|
11 | ovexd | |- ( ( ph /\ m e. ZZ ) -> ( m .x. X ) e. _V ) |
|
12 | fveq2 | |- ( m = M -> ( L ` m ) = ( L ` M ) ) |
|
13 | oveq1 | |- ( m = M -> ( m .x. X ) = ( M .x. X ) ) |
|
14 | 1 2 3 4 5 6 7 8 9 | cygznlem2a | |- ( ph -> F : ( Base ` Y ) --> B ) |
15 | 14 | ffund | |- ( ph -> Fun F ) |
16 | 9 10 11 12 13 15 | fliftval | |- ( ( ph /\ M e. ZZ ) -> ( F ` ( L ` M ) ) = ( M .x. X ) ) |