Step |
Hyp |
Ref |
Expression |
1 |
|
cygzn.b |
|- B = ( Base ` G ) |
2 |
|
cygzn.n |
|- N = if ( B e. Fin , ( # ` B ) , 0 ) |
3 |
|
cygzn.y |
|- Y = ( Z/nZ ` N ) |
4 |
|
cygzn.m |
|- .x. = ( .g ` G ) |
5 |
|
cygzn.l |
|- L = ( ZRHom ` Y ) |
6 |
|
cygzn.e |
|- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
7 |
|
cygzn.g |
|- ( ph -> G e. CycGrp ) |
8 |
|
cygzn.x |
|- ( ph -> X e. E ) |
9 |
|
cygzn.f |
|- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. ) |
10 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
11 |
|
eqid |
|- ( +g ` Y ) = ( +g ` Y ) |
12 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
13 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
14 |
13
|
adantl |
|- ( ( ph /\ B e. Fin ) -> ( # ` B ) e. NN0 ) |
15 |
|
0nn0 |
|- 0 e. NN0 |
16 |
15
|
a1i |
|- ( ( ph /\ -. B e. Fin ) -> 0 e. NN0 ) |
17 |
14 16
|
ifclda |
|- ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) e. NN0 ) |
18 |
2 17
|
eqeltrid |
|- ( ph -> N e. NN0 ) |
19 |
3
|
zncrng |
|- ( N e. NN0 -> Y e. CRing ) |
20 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
21 |
|
ringgrp |
|- ( Y e. Ring -> Y e. Grp ) |
22 |
18 19 20 21
|
4syl |
|- ( ph -> Y e. Grp ) |
23 |
|
cyggrp |
|- ( G e. CycGrp -> G e. Grp ) |
24 |
7 23
|
syl |
|- ( ph -> G e. Grp ) |
25 |
1 2 3 4 5 6 7 8 9
|
cygznlem2a |
|- ( ph -> F : ( Base ` Y ) --> B ) |
26 |
3 10 5
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Y ) ) |
27 |
18 26
|
syl |
|- ( ph -> L : ZZ -onto-> ( Base ` Y ) ) |
28 |
|
foelrn |
|- ( ( L : ZZ -onto-> ( Base ` Y ) /\ a e. ( Base ` Y ) ) -> E. i e. ZZ a = ( L ` i ) ) |
29 |
27 28
|
sylan |
|- ( ( ph /\ a e. ( Base ` Y ) ) -> E. i e. ZZ a = ( L ` i ) ) |
30 |
|
foelrn |
|- ( ( L : ZZ -onto-> ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> E. j e. ZZ b = ( L ` j ) ) |
31 |
27 30
|
sylan |
|- ( ( ph /\ b e. ( Base ` Y ) ) -> E. j e. ZZ b = ( L ` j ) ) |
32 |
29 31
|
anim12dan |
|- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) |
33 |
|
reeanv |
|- ( E. i e. ZZ E. j e. ZZ ( a = ( L ` i ) /\ b = ( L ` j ) ) <-> ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) |
34 |
24
|
adantr |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> G e. Grp ) |
35 |
|
simprl |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> i e. ZZ ) |
36 |
|
simprr |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> j e. ZZ ) |
37 |
1 4 6
|
iscyggen |
|- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
38 |
37
|
simplbi |
|- ( X e. E -> X e. B ) |
39 |
8 38
|
syl |
|- ( ph -> X e. B ) |
40 |
39
|
adantr |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> X e. B ) |
41 |
1 4 12
|
mulgdir |
|- ( ( G e. Grp /\ ( i e. ZZ /\ j e. ZZ /\ X e. B ) ) -> ( ( i + j ) .x. X ) = ( ( i .x. X ) ( +g ` G ) ( j .x. X ) ) ) |
42 |
34 35 36 40 41
|
syl13anc |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( i + j ) .x. X ) = ( ( i .x. X ) ( +g ` G ) ( j .x. X ) ) ) |
43 |
18 19
|
syl |
|- ( ph -> Y e. CRing ) |
44 |
5
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
45 |
|
rhmghm |
|- ( L e. ( ZZring RingHom Y ) -> L e. ( ZZring GrpHom Y ) ) |
46 |
43 20 44 45
|
4syl |
|- ( ph -> L e. ( ZZring GrpHom Y ) ) |
47 |
46
|
adantr |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> L e. ( ZZring GrpHom Y ) ) |
48 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
49 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
50 |
48 49 11
|
ghmlin |
|- ( ( L e. ( ZZring GrpHom Y ) /\ i e. ZZ /\ j e. ZZ ) -> ( L ` ( i + j ) ) = ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) |
51 |
47 35 36 50
|
syl3anc |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( L ` ( i + j ) ) = ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) |
52 |
51
|
fveq2d |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` ( i + j ) ) ) = ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) ) |
53 |
|
zaddcl |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( i + j ) e. ZZ ) |
54 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
|- ( ( ph /\ ( i + j ) e. ZZ ) -> ( F ` ( L ` ( i + j ) ) ) = ( ( i + j ) .x. X ) ) |
55 |
53 54
|
sylan2 |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` ( i + j ) ) ) = ( ( i + j ) .x. X ) ) |
56 |
52 55
|
eqtr3d |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) = ( ( i + j ) .x. X ) ) |
57 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
|- ( ( ph /\ i e. ZZ ) -> ( F ` ( L ` i ) ) = ( i .x. X ) ) |
58 |
57
|
adantrr |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` i ) ) = ( i .x. X ) ) |
59 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
|- ( ( ph /\ j e. ZZ ) -> ( F ` ( L ` j ) ) = ( j .x. X ) ) |
60 |
59
|
adantrl |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` j ) ) = ( j .x. X ) ) |
61 |
58 60
|
oveq12d |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) = ( ( i .x. X ) ( +g ` G ) ( j .x. X ) ) ) |
62 |
42 56 61
|
3eqtr4d |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) = ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) ) |
63 |
|
oveq12 |
|- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( a ( +g ` Y ) b ) = ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) |
64 |
63
|
fveq2d |
|- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) ) |
65 |
|
fveq2 |
|- ( a = ( L ` i ) -> ( F ` a ) = ( F ` ( L ` i ) ) ) |
66 |
|
fveq2 |
|- ( b = ( L ` j ) -> ( F ` b ) = ( F ` ( L ` j ) ) ) |
67 |
65 66
|
oveqan12d |
|- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) ( +g ` G ) ( F ` b ) ) = ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) ) |
68 |
64 67
|
eqeq12d |
|- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) <-> ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) = ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) ) ) |
69 |
62 68
|
syl5ibrcom |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) ) |
70 |
69
|
rexlimdvva |
|- ( ph -> ( E. i e. ZZ E. j e. ZZ ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) ) |
71 |
33 70
|
syl5bir |
|- ( ph -> ( ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) ) |
72 |
71
|
imp |
|- ( ( ph /\ ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) |
73 |
32 72
|
syldan |
|- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) |
74 |
10 1 11 12 22 24 25 73
|
isghmd |
|- ( ph -> F e. ( Y GrpHom G ) ) |
75 |
58 60
|
eqeq12d |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) <-> ( i .x. X ) = ( j .x. X ) ) ) |
76 |
1 2 3 4 5 6 7 8
|
cygznlem1 |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( L ` i ) = ( L ` j ) <-> ( i .x. X ) = ( j .x. X ) ) ) |
77 |
75 76
|
bitr4d |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) <-> ( L ` i ) = ( L ` j ) ) ) |
78 |
77
|
biimpd |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) -> ( L ` i ) = ( L ` j ) ) ) |
79 |
65 66
|
eqeqan12d |
|- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) <-> ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) ) ) |
80 |
|
eqeq12 |
|- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( a = b <-> ( L ` i ) = ( L ` j ) ) ) |
81 |
79 80
|
imbi12d |
|- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( ( F ` a ) = ( F ` b ) -> a = b ) <-> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) -> ( L ` i ) = ( L ` j ) ) ) ) |
82 |
78 81
|
syl5ibrcom |
|- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
83 |
82
|
rexlimdvva |
|- ( ph -> ( E. i e. ZZ E. j e. ZZ ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
84 |
33 83
|
syl5bir |
|- ( ph -> ( ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
85 |
84
|
imp |
|- ( ( ph /\ ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
86 |
32 85
|
syldan |
|- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
87 |
86
|
ralrimivva |
|- ( ph -> A. a e. ( Base ` Y ) A. b e. ( Base ` Y ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
88 |
|
dff13 |
|- ( F : ( Base ` Y ) -1-1-> B <-> ( F : ( Base ` Y ) --> B /\ A. a e. ( Base ` Y ) A. b e. ( Base ` Y ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
89 |
25 87 88
|
sylanbrc |
|- ( ph -> F : ( Base ` Y ) -1-1-> B ) |
90 |
1 4 6
|
iscyggen2 |
|- ( G e. Grp -> ( X e. E <-> ( X e. B /\ A. z e. B E. n e. ZZ z = ( n .x. X ) ) ) ) |
91 |
24 90
|
syl |
|- ( ph -> ( X e. E <-> ( X e. B /\ A. z e. B E. n e. ZZ z = ( n .x. X ) ) ) ) |
92 |
8 91
|
mpbid |
|- ( ph -> ( X e. B /\ A. z e. B E. n e. ZZ z = ( n .x. X ) ) ) |
93 |
92
|
simprd |
|- ( ph -> A. z e. B E. n e. ZZ z = ( n .x. X ) ) |
94 |
|
oveq1 |
|- ( n = j -> ( n .x. X ) = ( j .x. X ) ) |
95 |
94
|
eqeq2d |
|- ( n = j -> ( z = ( n .x. X ) <-> z = ( j .x. X ) ) ) |
96 |
95
|
cbvrexvw |
|- ( E. n e. ZZ z = ( n .x. X ) <-> E. j e. ZZ z = ( j .x. X ) ) |
97 |
27
|
adantr |
|- ( ( ph /\ z e. B ) -> L : ZZ -onto-> ( Base ` Y ) ) |
98 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Y ) -> L : ZZ --> ( Base ` Y ) ) |
99 |
97 98
|
syl |
|- ( ( ph /\ z e. B ) -> L : ZZ --> ( Base ` Y ) ) |
100 |
99
|
ffvelrnda |
|- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( L ` j ) e. ( Base ` Y ) ) |
101 |
59
|
adantlr |
|- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( F ` ( L ` j ) ) = ( j .x. X ) ) |
102 |
101
|
eqcomd |
|- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( j .x. X ) = ( F ` ( L ` j ) ) ) |
103 |
|
fveq2 |
|- ( a = ( L ` j ) -> ( F ` a ) = ( F ` ( L ` j ) ) ) |
104 |
103
|
rspceeqv |
|- ( ( ( L ` j ) e. ( Base ` Y ) /\ ( j .x. X ) = ( F ` ( L ` j ) ) ) -> E. a e. ( Base ` Y ) ( j .x. X ) = ( F ` a ) ) |
105 |
100 102 104
|
syl2anc |
|- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> E. a e. ( Base ` Y ) ( j .x. X ) = ( F ` a ) ) |
106 |
|
eqeq1 |
|- ( z = ( j .x. X ) -> ( z = ( F ` a ) <-> ( j .x. X ) = ( F ` a ) ) ) |
107 |
106
|
rexbidv |
|- ( z = ( j .x. X ) -> ( E. a e. ( Base ` Y ) z = ( F ` a ) <-> E. a e. ( Base ` Y ) ( j .x. X ) = ( F ` a ) ) ) |
108 |
105 107
|
syl5ibrcom |
|- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( z = ( j .x. X ) -> E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
109 |
108
|
rexlimdva |
|- ( ( ph /\ z e. B ) -> ( E. j e. ZZ z = ( j .x. X ) -> E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
110 |
96 109
|
syl5bi |
|- ( ( ph /\ z e. B ) -> ( E. n e. ZZ z = ( n .x. X ) -> E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
111 |
110
|
ralimdva |
|- ( ph -> ( A. z e. B E. n e. ZZ z = ( n .x. X ) -> A. z e. B E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
112 |
93 111
|
mpd |
|- ( ph -> A. z e. B E. a e. ( Base ` Y ) z = ( F ` a ) ) |
113 |
|
dffo3 |
|- ( F : ( Base ` Y ) -onto-> B <-> ( F : ( Base ` Y ) --> B /\ A. z e. B E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
114 |
25 112 113
|
sylanbrc |
|- ( ph -> F : ( Base ` Y ) -onto-> B ) |
115 |
|
df-f1o |
|- ( F : ( Base ` Y ) -1-1-onto-> B <-> ( F : ( Base ` Y ) -1-1-> B /\ F : ( Base ` Y ) -onto-> B ) ) |
116 |
89 114 115
|
sylanbrc |
|- ( ph -> F : ( Base ` Y ) -1-1-onto-> B ) |
117 |
10 1
|
isgim |
|- ( F e. ( Y GrpIso G ) <-> ( F e. ( Y GrpHom G ) /\ F : ( Base ` Y ) -1-1-onto-> B ) ) |
118 |
74 116 117
|
sylanbrc |
|- ( ph -> F e. ( Y GrpIso G ) ) |
119 |
|
brgici |
|- ( F e. ( Y GrpIso G ) -> Y ~=g G ) |
120 |
|
gicsym |
|- ( Y ~=g G -> G ~=g Y ) |
121 |
118 119 120
|
3syl |
|- ( ph -> G ~=g Y ) |