Step |
Hyp |
Ref |
Expression |
1 |
|
0fin |
|- (/) e. Fin |
2 |
|
id |
|- ( R e. V -> R e. V ) |
3 |
|
0ex |
|- (/) e. _V |
4 |
3
|
snid |
|- (/) e. { (/) } |
5 |
|
mat0dimbas0 |
|- ( R e. V -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
6 |
4 5
|
eleqtrrid |
|- ( R e. V -> (/) e. ( Base ` ( (/) Mat R ) ) ) |
7 |
|
eqid |
|- ( (/) matToPolyMat R ) = ( (/) matToPolyMat R ) |
8 |
|
eqid |
|- ( (/) Mat R ) = ( (/) Mat R ) |
9 |
|
eqid |
|- ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) |
10 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
11 |
|
eqid |
|- ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) |
12 |
7 8 9 10 11
|
mat2pmatval |
|- ( ( (/) e. Fin /\ R e. V /\ (/) e. ( Base ` ( (/) Mat R ) ) ) -> ( ( (/) matToPolyMat R ) ` (/) ) = ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) ) |
13 |
1 2 6 12
|
mp3an2i |
|- ( R e. V -> ( ( (/) matToPolyMat R ) ` (/) ) = ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) ) |
14 |
|
mpo0 |
|- ( x e. (/) , y e. (/) |-> ( ( algSc ` ( Poly1 ` R ) ) ` ( x (/) y ) ) ) = (/) |
15 |
13 14
|
eqtrdi |
|- ( R e. V -> ( ( (/) matToPolyMat R ) ` (/) ) = (/) ) |