Step |
Hyp |
Ref |
Expression |
1 |
|
dalaw.l |
|- .<_ = ( le ` K ) |
2 |
|
dalaw.j |
|- .\/ = ( join ` K ) |
3 |
|
dalaw.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalaw.a |
|- A = ( Atoms ` K ) |
5 |
|
eqid |
|- ( LPlanes ` K ) = ( LPlanes ` K ) |
6 |
1 2 3 4 5
|
dalawlem14 |
|- ( ( ( K e. HL /\ -. ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
7 |
6
|
3expib |
|- ( ( K e. HL /\ -. ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
8 |
7
|
3exp |
|- ( K e. HL -> ( -. ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
9 |
1 2 3 4 5
|
dalawlem15 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
10 |
9
|
3expib |
|- ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
11 |
10
|
3exp |
|- ( K e. HL -> ( -. ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
12 |
|
simp11 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
13 |
|
simp2 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P e. A /\ Q e. A /\ R e. A ) ) |
14 |
|
simp3 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S e. A /\ T e. A /\ U e. A ) ) |
15 |
|
simp2ll |
|- ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) ) |
17 |
|
simp2rl |
|- ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) ) |
18 |
17
|
3ad2ant1 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) ) |
19 |
|
simp2lr |
|- ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) |
20 |
19
|
3ad2ant1 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) |
21 |
|
simp2rr |
|- ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) |
22 |
21
|
3ad2ant1 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) |
23 |
|
simp13 |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
24 |
1 2 3 4 5
|
dalawlem1 |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) ) /\ ( ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
25 |
12 13 14 16 18 20 22 23 24
|
syl323anc |
|- ( ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
26 |
25
|
3expib |
|- ( ( K e. HL /\ ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
27 |
26
|
3exp |
|- ( K e. HL -> ( ( ( ( ( P .\/ Q ) .\/ R ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ P ) ) ) /\ ( ( ( S .\/ T ) .\/ U ) e. ( LPlanes ` K ) /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
28 |
8 11 27
|
ecased |
|- ( K e. HL -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) |
29 |
28
|
exp4a |
|- ( K e. HL -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( P e. A /\ Q e. A /\ R e. A ) -> ( ( S e. A /\ T e. A /\ U e. A ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
30 |
29
|
com34 |
|- ( K e. HL -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( S e. A /\ T e. A /\ U e. A ) -> ( ( P e. A /\ Q e. A /\ R e. A ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
31 |
30
|
com24 |
|- ( K e. HL -> ( ( P e. A /\ Q e. A /\ R e. A ) -> ( ( S e. A /\ T e. A /\ U e. A ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
32 |
31
|
3imp |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |