Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
8 |
|
simp21 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
9 |
|
simp22 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
10 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
12 |
|
simp31 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
13 |
|
simp32 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
14 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
15 |
6 12 13 14
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
16 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
17 |
7 11 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
18 |
|
simp23 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A ) |
19 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
20 |
6 9 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
21 |
5 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
22 |
7 11 15 21
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
23 |
|
simp12 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( Q .\/ R ) ) |
24 |
5 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
25 |
9 24
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. ( Base ` K ) ) |
26 |
5 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
27 |
18 26
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. ( Base ` K ) ) |
28 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> Q .<_ ( Q .\/ R ) ) |
29 |
7 25 27 28
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ R ) ) |
30 |
5 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
31 |
8 30
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) ) |
32 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( Q .\/ R ) /\ Q .<_ ( Q .\/ R ) ) <-> ( P .\/ Q ) .<_ ( Q .\/ R ) ) ) |
33 |
7 31 25 20 32
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .<_ ( Q .\/ R ) /\ Q .<_ ( Q .\/ R ) ) <-> ( P .\/ Q ) .<_ ( Q .\/ R ) ) ) |
34 |
23 29 33
|
mpbi2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) .<_ ( Q .\/ R ) ) |
35 |
5 1 7 17 11 20 22 34
|
lattrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( Q .\/ R ) ) |
36 |
5 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
37 |
13 36
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. ( Base ` K ) ) |
38 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
39 |
7 11 37 38
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
40 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
41 |
7 39 15 40
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) e. ( Base ` K ) ) |
42 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
43 |
6 18 8 42
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
44 |
|
simp33 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
45 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
46 |
6 44 12 45
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
47 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
48 |
7 43 46 47
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
49 |
5 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
50 |
44 49
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) ) |
51 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) ) |
52 |
7 48 50 51
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) ) |
53 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) e. ( Base ` K ) ) |
54 |
7 52 37 53
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) e. ( Base ` K ) ) |
55 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
56 |
7 11 37 55
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
57 |
5 1 3
|
latmlem1 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) ) |
58 |
7 11 39 15 57
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) ) |
59 |
56 58
|
mpd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) |
60 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> T .<_ ( ( P .\/ Q ) .\/ T ) ) |
61 |
7 11 37 60
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( ( P .\/ Q ) .\/ T ) ) |
62 |
5 1 2 3 4
|
atmod2i2 |
|- ( ( K e. HL /\ ( S e. A /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ T .<_ ( ( P .\/ Q ) .\/ T ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) |
63 |
6 12 39 37 61 62
|
syl131anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) ) |
64 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
65 |
6 9 13 64
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
66 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
67 |
6 8 12 66
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
68 |
5 3
|
latmcom |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
69 |
7 65 67 68
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
70 |
|
simp13 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
71 |
69 70
|
eqbrtrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) ) |
72 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
73 |
7 65 67 72
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
74 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
75 |
6 18 44 74
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
76 |
5 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( R .\/ U ) ) ) ) |
77 |
7 73 75 31 76
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( R .\/ U ) ) ) ) |
78 |
71 77
|
mpd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( R .\/ U ) ) ) |
79 |
5 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
80 |
12 79
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) ) |
81 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> P .<_ ( P .\/ S ) ) |
82 |
7 31 80 81
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( P .\/ S ) ) |
83 |
5 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) |
84 |
6 8 65 67 82 83
|
syl131anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) |
85 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ R e. A /\ U e. A ) ) -> ( ( P .\/ R ) .\/ U ) = ( P .\/ ( R .\/ U ) ) ) |
86 |
6 8 18 44 85
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ R ) .\/ U ) = ( P .\/ ( R .\/ U ) ) ) |
87 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) ) |
88 |
6 8 18 87
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ R ) = ( R .\/ P ) ) |
89 |
88
|
oveq1d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ R ) .\/ U ) = ( ( R .\/ P ) .\/ U ) ) |
90 |
86 89
|
eqtr3d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ U ) ) = ( ( R .\/ P ) .\/ U ) ) |
91 |
78 84 90
|
3brtr3d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) .<_ ( ( R .\/ P ) .\/ U ) ) |
92 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( U .\/ S ) ) |
93 |
7 50 80 92
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( U .\/ S ) ) |
94 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) ) |
95 |
7 31 65 94
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) ) |
96 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
97 |
7 95 67 96
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
98 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( R .\/ P ) .\/ U ) e. ( Base ` K ) ) |
99 |
7 43 50 98
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) .\/ U ) e. ( Base ` K ) ) |
100 |
5 1 3
|
latmlem12 |
|- ( ( K e. Lat /\ ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) .\/ U ) e. ( Base ` K ) ) /\ ( S e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) .<_ ( ( R .\/ P ) .\/ U ) /\ S .<_ ( U .\/ S ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) .<_ ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) ) |
101 |
7 97 99 80 46 100
|
syl122anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) .<_ ( ( R .\/ P ) .\/ U ) /\ S .<_ ( U .\/ S ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) .<_ ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) ) |
102 |
91 93 101
|
mp2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) .<_ ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) |
103 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
104 |
6 103
|
syl |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. OL ) |
105 |
5 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( ( P .\/ S ) ./\ S ) ) ) |
106 |
104 95 67 80 105
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( ( P .\/ S ) ./\ S ) ) ) |
107 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .\/ T ) = ( P .\/ ( Q .\/ T ) ) ) |
108 |
6 8 9 13 107
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ T ) = ( P .\/ ( Q .\/ T ) ) ) |
109 |
108
|
eqcomd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ T ) ) = ( ( P .\/ Q ) .\/ T ) ) |
110 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( P .\/ S ) ) |
111 |
7 31 80 110
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( P .\/ S ) ) |
112 |
5 1 3
|
latleeqm2 |
|- ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( S .<_ ( P .\/ S ) <-> ( ( P .\/ S ) ./\ S ) = S ) ) |
113 |
7 80 67 112
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .<_ ( P .\/ S ) <-> ( ( P .\/ S ) ./\ S ) = S ) ) |
114 |
111 113
|
mpbid |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ S ) = S ) |
115 |
109 114
|
oveq12d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ ( ( P .\/ S ) ./\ S ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ S ) ) |
116 |
106 115
|
eqtr2d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) = ( ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ./\ S ) ) |
117 |
5 1 2
|
latlej1 |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> U .<_ ( U .\/ S ) ) |
118 |
7 50 80 117
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( U .\/ S ) ) |
119 |
5 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( U e. A /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) /\ U .<_ ( U .\/ S ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) = ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) |
120 |
6 44 43 46 118 119
|
syl131anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) = ( ( ( R .\/ P ) .\/ U ) ./\ ( U .\/ S ) ) ) |
121 |
102 116 120
|
3brtr4d |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) ) |
122 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) ) |
123 |
7 39 80 122
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) ) |
124 |
5 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) /\ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) ) |
125 |
7 123 52 37 124
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) ) |
126 |
121 125
|
mpd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ T ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) |
127 |
63 126
|
eqbrtrrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) |
128 |
5 1 7 17 41 54 59 127
|
lattrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) ) |
129 |
5 2
|
latj31 |
|- ( ( K e. Lat /\ ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) = ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
130 |
7 48 50 37 129
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ U ) .\/ T ) = ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
131 |
128 130
|
breqtrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
132 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
133 |
6 13 44 132
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
134 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
135 |
7 133 48 134
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
136 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) |
137 |
7 17 20 135 136
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) |
138 |
35 131 137
|
mpbi2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
139 |
5 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( R .\/ P ) ) |
140 |
7 43 46 139
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( R .\/ P ) ) |
141 |
5 1 2
|
latlej2 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> R .<_ ( Q .\/ R ) ) |
142 |
7 25 27 141
|
syl3anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R .<_ ( Q .\/ R ) ) |
143 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( Q .\/ R ) /\ P .<_ ( Q .\/ R ) ) <-> ( R .\/ P ) .<_ ( Q .\/ R ) ) ) |
144 |
7 27 31 20 143
|
syl13anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .<_ ( Q .\/ R ) /\ P .<_ ( Q .\/ R ) ) <-> ( R .\/ P ) .<_ ( Q .\/ R ) ) ) |
145 |
142 23 144
|
mpbi2and |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) .<_ ( Q .\/ R ) ) |
146 |
5 1 7 48 43 20 140 145
|
lattrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( Q .\/ R ) ) |
147 |
5 1 2 3 4
|
llnmod2i2 |
|- ( ( ( K e. HL /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) /\ ( T e. A /\ U e. A ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) .<_ ( Q .\/ R ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
148 |
6 20 48 13 44 146 147
|
syl321anc |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( Q .\/ R ) ./\ ( ( T .\/ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
149 |
138 148
|
breqtrrd |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |