| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalawlem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							dalawlem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalawlem.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalawlem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL )  | 
						
						
							| 7 | 
							
								6
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A )  | 
						
						
							| 9 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A )  | 
						
						
							| 10 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 11 | 
							
								6 8 9 10
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp31 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							simp32 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A )  | 
						
						
							| 14 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								6 12 13 14
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								5 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								7 11 15 16
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								5 4
							 | 
							atbase | 
							 |-  ( S e. A -> S e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								5 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								7 11 19 20
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								5 4
							 | 
							atbase | 
							 |-  ( T e. A -> T e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								13 22
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								5 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								7 21 23 24
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								5 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								7 25 19 26
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								5 4
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								9 28
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simp33 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A )  | 
						
						
							| 31 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								6 13 30 31
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								5 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) )  | 
						
						
							| 34 | 
							
								7 29 32 33
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) )  | 
						
						
							| 35 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 36 | 
							
								6 30 12 35
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 37 | 
							
								5 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 38 | 
							
								7 34 36 37
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 39 | 
							
								5 1 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 40 | 
							
								7 11 19 39
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 41 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ T e. A /\ S e. A ) -> ( T .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 42 | 
							
								6 13 12 41
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								5 1 3
							 | 
							latmlem1 | 
							 |-  ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ ( T .\/ S ) e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) )  | 
						
						
							| 44 | 
							
								7 11 21 42 43
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) ) )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							mpd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( T .\/ S ) ) .<_ ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) )  | 
						
						
							| 46 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) = ( T .\/ S ) )  | 
						
						
							| 47 | 
							
								6 12 13 46
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) = ( T .\/ S ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) = ( ( P .\/ Q ) ./\ ( T .\/ S ) ) )  | 
						
						
							| 49 | 
							
								5 1 2
							 | 
							latlej2 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 50 | 
							
								7 11 19 49
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 51 | 
							
								5 1 2 3 4
							 | 
							atmod2i2 | 
							 |-  ( ( K e. HL /\ ( T e. A /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) /\ S .<_ ( ( P .\/ Q ) .\/ S ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) )  | 
						
						
							| 52 | 
							
								6 13 21 19 50 51
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( T .\/ S ) ) )  | 
						
						
							| 53 | 
							
								45 48 52
							 | 
							3brtr4d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) )  | 
						
						
							| 54 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 55 | 
							
								6 54
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. OL )  | 
						
						
							| 56 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 57 | 
							
								6 8 12 56
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 58 | 
							
								5 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 59 | 
							
								7 29 57 58
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 60 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 61 | 
							
								6 9 13 60
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 62 | 
							
								5 3
							 | 
							latmassOLD | 
							 |-  ( ( K e. OL /\ ( ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) )  | 
						
						
							| 63 | 
							
								55 59 61 23 62
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) )  | 
						
						
							| 64 | 
							
								2 4
							 | 
							hlatjass | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ S ) = ( P .\/ ( Q .\/ S ) ) )  | 
						
						
							| 65 | 
							
								6 8 9 12 64
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ S ) = ( P .\/ ( Q .\/ S ) ) )  | 
						
						
							| 66 | 
							
								2 4
							 | 
							hlatj12 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> ( P .\/ ( Q .\/ S ) ) = ( Q .\/ ( P .\/ S ) ) )  | 
						
						
							| 67 | 
							
								6 8 9 12 66
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ S ) ) = ( Q .\/ ( P .\/ S ) ) )  | 
						
						
							| 68 | 
							
								65 67
							 | 
							eqtr2d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( P .\/ S ) ) = ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 69 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							 |-  ( ( K e. HL /\ Q e. A /\ T e. A ) -> T .<_ ( Q .\/ T ) )  | 
						
						
							| 70 | 
							
								6 9 13 69
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( Q .\/ T ) )  | 
						
						
							| 71 | 
							
								5 1 3
							 | 
							latleeqm2 | 
							 |-  ( ( K e. Lat /\ T e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( T .<_ ( Q .\/ T ) <-> ( ( Q .\/ T ) ./\ T ) = T ) )  | 
						
						
							| 72 | 
							
								7 23 61 71
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .<_ ( Q .\/ T ) <-> ( ( Q .\/ T ) ./\ T ) = T ) )  | 
						
						
							| 73 | 
							
								70 72
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ T ) = T )  | 
						
						
							| 74 | 
							
								68 73
							 | 
							oveq12d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( ( Q .\/ T ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ S ) ./\ T ) )  | 
						
						
							| 75 | 
							
								63 74
							 | 
							eqtr2d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) = ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) )  | 
						
						
							| 76 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ Q e. A /\ T e. A ) -> Q .<_ ( Q .\/ T ) )  | 
						
						
							| 77 | 
							
								6 9 13 76
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ T ) )  | 
						
						
							| 78 | 
							
								5 1 2 3 4
							 | 
							atmod1i1 | 
							 |-  ( ( K e. HL /\ ( Q e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) /\ Q .<_ ( Q .\/ T ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) )  | 
						
						
							| 79 | 
							
								6 9 57 61 77 78
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) )  | 
						
						
							| 80 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							 |-  ( ( K e. HL /\ U e. A /\ Q e. A ) -> Q .<_ ( U .\/ Q ) )  | 
						
						
							| 81 | 
							
								6 30 9 80
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( U .\/ Q ) )  | 
						
						
							| 82 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) )  | 
						
						
							| 83 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q = R )  | 
						
						
							| 84 | 
							
								83
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ U ) = ( R .\/ U ) )  | 
						
						
							| 85 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ Q e. A /\ U e. A ) -> ( Q .\/ U ) = ( U .\/ Q ) )  | 
						
						
							| 86 | 
							
								6 9 30 85
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ U ) = ( U .\/ Q ) )  | 
						
						
							| 87 | 
							
								84 86
							 | 
							eqtr3d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) = ( U .\/ Q ) )  | 
						
						
							| 88 | 
							
								82 87
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) )  | 
						
						
							| 89 | 
							
								5 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) )  | 
						
						
							| 90 | 
							
								7 57 61 89
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) )  | 
						
						
							| 91 | 
							
								5 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ U e. A /\ Q e. A ) -> ( U .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 92 | 
							
								6 30 9 91
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 93 | 
							
								5 1 2
							 | 
							latjle12 | 
							 |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( U .\/ Q ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( U .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) <-> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) )  | 
						
						
							| 94 | 
							
								7 29 90 92 93
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .<_ ( U .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) ) <-> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) ) )  | 
						
						
							| 95 | 
							
								81 88 94
							 | 
							mpbi2and | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( U .\/ Q ) )  | 
						
						
							| 96 | 
							
								79 95
							 | 
							eqbrtrrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) )  | 
						
						
							| 97 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ T e. A /\ U e. A ) -> T .<_ ( T .\/ U ) )  | 
						
						
							| 98 | 
							
								6 13 30 97
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T .<_ ( T .\/ U ) )  | 
						
						
							| 99 | 
							
								5 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( Q .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) )  | 
						
						
							| 100 | 
							
								7 59 61 99
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) )  | 
						
						
							| 101 | 
							
								5 1 3
							 | 
							latmlem12 | 
							 |-  ( ( K e. Lat /\ ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( U .\/ Q ) e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) ) -> ( ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) /\ T .<_ ( T .\/ U ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) )  | 
						
						
							| 102 | 
							
								7 100 92 23 32 101
							 | 
							syl122anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ Q ) /\ T .<_ ( T .\/ U ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) ) )  | 
						
						
							| 103 | 
							
								96 98 102
							 | 
							mp2and | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ ( P .\/ S ) ) ./\ ( Q .\/ T ) ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) )  | 
						
						
							| 104 | 
							
								75 103
							 | 
							eqbrtrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( U .\/ Q ) ./\ ( T .\/ U ) ) )  | 
						
						
							| 105 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							 |-  ( ( K e. HL /\ T e. A /\ U e. A ) -> U .<_ ( T .\/ U ) )  | 
						
						
							| 106 | 
							
								6 13 30 105
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( T .\/ U ) )  | 
						
						
							| 107 | 
							
								5 1 2 3 4
							 | 
							atmod1i1 | 
							 |-  ( ( K e. HL /\ ( U e. A /\ Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) /\ U .<_ ( T .\/ U ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( U .\/ Q ) ./\ ( T .\/ U ) ) )  | 
						
						
							| 108 | 
							
								6 30 29 32 106 107
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( U .\/ Q ) ./\ ( T .\/ U ) ) )  | 
						
						
							| 109 | 
							
								5 4
							 | 
							atbase | 
							 |-  ( U e. A -> U e. ( Base ` K ) )  | 
						
						
							| 110 | 
							
								30 109
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) )  | 
						
						
							| 111 | 
							
								5 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) )  | 
						
						
							| 112 | 
							
								7 110 34 111
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( Q ./\ ( T .\/ U ) ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) )  | 
						
						
							| 113 | 
							
								108 112
							 | 
							eqtr3d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ Q ) ./\ ( T .\/ U ) ) = ( ( Q ./\ ( T .\/ U ) ) .\/ U ) )  | 
						
						
							| 114 | 
							
								104 113
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) )  | 
						
						
							| 115 | 
							
								5 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 116 | 
							
								7 34 110 115
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 117 | 
							
								5 1 2
							 | 
							latjlej1 | 
							 |-  ( ( K e. Lat /\ ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) /\ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) )  | 
						
						
							| 118 | 
							
								7 25 116 19 117
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ U ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) ) )  | 
						
						
							| 119 | 
							
								114 118
							 | 
							mpd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) )  | 
						
						
							| 120 | 
							
								5 2
							 | 
							latjass | 
							 |-  ( ( K e. Lat /\ ( ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) = ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) )  | 
						
						
							| 121 | 
							
								7 34 110 19 120
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ U ) .\/ S ) = ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) )  | 
						
						
							| 122 | 
							
								119 121
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .\/ S ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) )  | 
						
						
							| 123 | 
							
								5 1 7 17 27 38 53 122
							 | 
							lattrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) )  | 
						
						
							| 124 | 
							
								5 1 3
							 | 
							latmle1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) )  | 
						
						
							| 125 | 
							
								7 11 15 124
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) )  | 
						
						
							| 126 | 
							
								5 1 3
							 | 
							latlem12 | 
							 |-  ( ( K e. Lat /\ ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) e. ( Base ` K ) /\ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) )  | 
						
						
							| 127 | 
							
								7 17 38 11 126
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) /\ ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) <-> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) ) )  | 
						
						
							| 128 | 
							
								123 125 127
							 | 
							mpbi2and | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) )  | 
						
						
							| 129 | 
							
								5 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 130 | 
							
								8 129
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 131 | 
							
								5 1 2 3
							 | 
							latmlej12 | 
							 |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) )  | 
						
						
							| 132 | 
							
								7 29 32 130 131
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) )  | 
						
						
							| 133 | 
							
								5 1 2 3 4
							 | 
							llnmod1i2 | 
							 |-  ( ( ( K e. HL /\ ( Q ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ ( U e. A /\ S e. A ) /\ ( Q ./\ ( T .\/ U ) ) .<_ ( P .\/ Q ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) )  | 
						
						
							| 134 | 
							
								6 34 11 30 12 132 133
							 | 
							syl321anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) )  | 
						
						
							| 135 | 
							
								2 4
							 | 
							hlatjidm | 
							 |-  ( ( K e. HL /\ Q e. A ) -> ( Q .\/ Q ) = Q )  | 
						
						
							| 136 | 
							
								6 9 135
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ Q ) = Q )  | 
						
						
							| 137 | 
							
								83
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ Q ) = ( Q .\/ R ) )  | 
						
						
							| 138 | 
							
								136 137
							 | 
							eqtr3d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q = ( Q .\/ R ) )  | 
						
						
							| 139 | 
							
								138
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( T .\/ U ) ) = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) )  | 
						
						
							| 140 | 
							
								5 3
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ ( U .\/ S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ ( U .\/ S ) ) )  | 
						
						
							| 141 | 
							
								7 36 11 140
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( P .\/ Q ) ./\ ( U .\/ S ) ) )  | 
						
						
							| 142 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) )  | 
						
						
							| 143 | 
							
								6 8 9 142
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) = ( Q .\/ P ) )  | 
						
						
							| 144 | 
							
								83
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ P ) = ( R .\/ P ) )  | 
						
						
							| 145 | 
							
								143 144
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) = ( R .\/ P ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( U .\/ S ) ) = ( ( R .\/ P ) ./\ ( U .\/ S ) ) )  | 
						
						
							| 147 | 
							
								141 146
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .\/ S ) ./\ ( P .\/ Q ) ) = ( ( R .\/ P ) ./\ ( U .\/ S ) ) )  | 
						
						
							| 148 | 
							
								139 147
							 | 
							oveq12d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ ( T .\/ U ) ) .\/ ( ( U .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) )  | 
						
						
							| 149 | 
							
								134 148
							 | 
							eqtr3d | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ ( T .\/ U ) ) .\/ ( U .\/ S ) ) ./\ ( P .\/ Q ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) )  | 
						
						
							| 150 | 
							
								128 149
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) )  |