Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalawlem2.o |
|- O = ( LPlanes ` K ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
7 |
|
simp12 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> -. ( ( P .\/ Q ) .\/ R ) e. O ) |
8 |
|
simp22 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
9 |
|
simp23 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A ) |
10 |
|
simp21 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
11 |
1 2 4 5
|
islpln2a |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) ) -> ( ( ( Q .\/ R ) .\/ P ) e. O <-> ( Q =/= R /\ -. P .<_ ( Q .\/ R ) ) ) ) |
12 |
6 8 9 10 11
|
syl13anc |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) .\/ P ) e. O <-> ( Q =/= R /\ -. P .<_ ( Q .\/ R ) ) ) ) |
13 |
|
df-ne |
|- ( Q =/= R <-> -. Q = R ) |
14 |
13
|
anbi1i |
|- ( ( Q =/= R /\ -. P .<_ ( Q .\/ R ) ) <-> ( -. Q = R /\ -. P .<_ ( Q .\/ R ) ) ) |
15 |
|
pm4.56 |
|- ( ( -. Q = R /\ -. P .<_ ( Q .\/ R ) ) <-> -. ( Q = R \/ P .<_ ( Q .\/ R ) ) ) |
16 |
14 15
|
bitri |
|- ( ( Q =/= R /\ -. P .<_ ( Q .\/ R ) ) <-> -. ( Q = R \/ P .<_ ( Q .\/ R ) ) ) |
17 |
12 16
|
bitr2di |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( Q = R \/ P .<_ ( Q .\/ R ) ) <-> ( ( Q .\/ R ) .\/ P ) e. O ) ) |
18 |
2 4
|
hlatjrot |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
19 |
6 8 9 10 18
|
syl13anc |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
20 |
19
|
eleq1d |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) .\/ P ) e. O <-> ( ( P .\/ Q ) .\/ R ) e. O ) ) |
21 |
17 20
|
bitrd |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( Q = R \/ P .<_ ( Q .\/ R ) ) <-> ( ( P .\/ Q ) .\/ R ) e. O ) ) |
22 |
21
|
con1bid |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( ( P .\/ Q ) .\/ R ) e. O <-> ( Q = R \/ P .<_ ( Q .\/ R ) ) ) ) |
23 |
7 22
|
mpbid |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q = R \/ P .<_ ( Q .\/ R ) ) ) |
24 |
|
simp13 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
25 |
|
simp2 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P e. A /\ Q e. A /\ R e. A ) ) |
26 |
|
simp3 |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S e. A /\ T e. A /\ U e. A ) ) |
27 |
1 2 3 4
|
dalawlem12 |
|- ( ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
28 |
27
|
3expib |
|- ( ( K e. HL /\ Q = R /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
29 |
28
|
3exp |
|- ( K e. HL -> ( Q = R -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
30 |
1 2 3 4
|
dalawlem11 |
|- ( ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
31 |
30
|
3expib |
|- ( ( K e. HL /\ P .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
32 |
31
|
3exp |
|- ( K e. HL -> ( P .<_ ( Q .\/ R ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
33 |
29 32
|
jaod |
|- ( K e. HL -> ( ( Q = R \/ P .<_ ( Q .\/ R ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) ) ) |
34 |
33
|
3imp |
|- ( ( K e. HL /\ ( Q = R \/ P .<_ ( Q .\/ R ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) -> ( ( ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
35 |
34
|
3impib |
|- ( ( ( K e. HL /\ ( Q = R \/ P .<_ ( Q .\/ R ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
36 |
6 23 24 25 26 35
|
syl311anc |
|- ( ( ( K e. HL /\ -. ( ( P .\/ Q ) .\/ R ) e. O /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |