Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalawlem2.o |
|- O = ( LPlanes ` K ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
7 |
|
simp12 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) ) |
8 |
|
simp21 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
9 |
|
simp31 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
10 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) = ( S .\/ P ) ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) = ( S .\/ P ) ) |
12 |
|
simp22 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
13 |
|
simp32 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
14 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) = ( T .\/ Q ) ) |
15 |
6 12 13 14
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) = ( T .\/ Q ) ) |
16 |
11 15
|
oveq12d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) = ( ( S .\/ P ) ./\ ( T .\/ Q ) ) ) |
17 |
16
|
breq1d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) <-> ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( S .\/ T ) ) ) |
18 |
17
|
notbid |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) <-> -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( S .\/ T ) ) ) |
19 |
16
|
breq1d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) <-> ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( T .\/ U ) ) ) |
20 |
19
|
notbid |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) <-> -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( T .\/ U ) ) ) |
21 |
16
|
breq1d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) <-> ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ S ) ) ) |
22 |
21
|
notbid |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) <-> -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ S ) ) ) |
23 |
18 20 22
|
3anbi123d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) <-> ( -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( S .\/ T ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( T .\/ U ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ S ) ) ) ) |
24 |
23
|
anbi2d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) <-> ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( S .\/ T ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( T .\/ U ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ S ) ) ) ) ) |
25 |
7 24
|
mtbid |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( S .\/ T ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( T .\/ U ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ S ) ) ) ) |
26 |
|
simp13 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
27 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ S e. A /\ P e. A ) -> ( S .\/ P ) = ( P .\/ S ) ) |
28 |
6 9 8 27
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ P ) = ( P .\/ S ) ) |
29 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ T e. A /\ Q e. A ) -> ( T .\/ Q ) = ( Q .\/ T ) ) |
30 |
6 13 12 29
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ Q ) = ( Q .\/ T ) ) |
31 |
28 30
|
oveq12d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( S .\/ P ) ./\ ( T .\/ Q ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
32 |
|
simp33 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
33 |
|
simp23 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A ) |
34 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ U e. A /\ R e. A ) -> ( U .\/ R ) = ( R .\/ U ) ) |
35 |
6 32 33 34
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ R ) = ( R .\/ U ) ) |
36 |
26 31 35
|
3brtr4d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ R ) ) |
37 |
|
simp3 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S e. A /\ T e. A /\ U e. A ) ) |
38 |
|
simp2 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P e. A /\ Q e. A /\ R e. A ) ) |
39 |
1 2 3 4 5
|
dalawlem14 |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( S .\/ T ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( T .\/ U ) /\ -. ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ S ) ) ) /\ ( ( S .\/ P ) ./\ ( T .\/ Q ) ) .<_ ( U .\/ R ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( S .\/ T ) ./\ ( P .\/ Q ) ) .<_ ( ( ( T .\/ U ) ./\ ( Q .\/ R ) ) .\/ ( ( U .\/ S ) ./\ ( R .\/ P ) ) ) ) |
40 |
6 25 36 37 38 39
|
syl311anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( S .\/ T ) ./\ ( P .\/ Q ) ) .<_ ( ( ( T .\/ U ) ./\ ( Q .\/ R ) ) .\/ ( ( U .\/ S ) ./\ ( R .\/ P ) ) ) ) |
41 |
6
|
hllatd |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
42 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
43 |
42 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
44 |
6 8 12 43
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
45 |
42 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
46 |
6 9 13 45
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
47 |
42 3
|
latmcom |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) = ( ( S .\/ T ) ./\ ( P .\/ Q ) ) ) |
48 |
41 44 46 47
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) = ( ( S .\/ T ) ./\ ( P .\/ Q ) ) ) |
49 |
42 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
50 |
6 12 33 49
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
51 |
42 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
52 |
6 13 32 51
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
53 |
42 3
|
latmcom |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) = ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
54 |
41 50 52 53
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) = ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
55 |
42 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
56 |
6 33 8 55
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
57 |
42 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
58 |
6 32 9 57
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
59 |
42 3
|
latmcom |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) = ( ( U .\/ S ) ./\ ( R .\/ P ) ) ) |
60 |
41 56 58 59
|
syl3anc |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) = ( ( U .\/ S ) ./\ ( R .\/ P ) ) ) |
61 |
54 60
|
oveq12d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( ( T .\/ U ) ./\ ( Q .\/ R ) ) .\/ ( ( U .\/ S ) ./\ ( R .\/ P ) ) ) ) |
62 |
40 48 61
|
3brtr4d |
|- ( ( ( K e. HL /\ -. ( ( ( S .\/ T ) .\/ U ) e. O /\ ( -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( S .\/ T ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( T .\/ U ) /\ -. ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( U .\/ S ) ) ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |