Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
5 |
|
simp1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. HL ) |
6 |
5
|
hllatd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Lat ) |
7 |
|
simp2l |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. A ) |
8 |
|
simp2r |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. A ) |
9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
10 |
9 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
11 |
5 7 8 10
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
12 |
|
simp3r |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. A ) |
13 |
9 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
14 |
12 13
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. ( Base ` K ) ) |
15 |
9 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
16 |
6 11 14 15
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
17 |
|
simp3l |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. A ) |
18 |
9 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
19 |
17 18
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. ( Base ` K ) ) |
20 |
9 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) |
21 |
6 11 19 20
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) |
22 |
9 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
23 |
6 11 14 22
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
24 |
9 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) |
25 |
6 11 19 24
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) |
26 |
9 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) /\ ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) <-> ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ) ) |
27 |
6 11 23 25 26
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) /\ ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) <-> ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ) ) |
28 |
16 21 27
|
mpbi2and |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ) |
29 |
9 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) e. ( Base ` K ) ) |
30 |
6 23 25 29
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) e. ( Base ` K ) ) |
31 |
9 2 4
|
hlatjcl |
|- ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) ) |
32 |
5 17 12 31
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) ) |
33 |
9 1 3
|
latmlem1 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) ) ) |
34 |
6 11 30 32 33
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) ) ) |
35 |
28 34
|
mpd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) ) |
36 |
9 1 2
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) ) |
37 |
6 11 19 36
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) ) |
38 |
9 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( S e. A /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ S .<_ ( ( P .\/ Q ) .\/ S ) ) -> ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) |
39 |
5 17 25 14 37 38
|
syl131anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) |
40 |
39
|
oveq2d |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) ) |
41 |
9 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) |
42 |
6 25 14 41
|
syl3anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) |
43 |
9 1 2 3
|
latmlej22 |
|- ( ( K e. Lat /\ ( T e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
44 |
6 14 25 11 43
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( P .\/ Q ) .\/ T ) ) |
45 |
9 1 2 3 4
|
atmod2i2 |
|- ( ( K e. HL /\ ( S e. A /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) /\ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( P .\/ Q ) .\/ T ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) ) |
46 |
5 17 23 42 44 45
|
syl131anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) ) |
47 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
48 |
5 47
|
syl |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. OL ) |
49 |
9 3
|
latmassOLD |
|- ( ( K e. OL /\ ( ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) ) |
50 |
48 23 25 32 49
|
syl13anc |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) ) |
51 |
40 46 50
|
3eqtr4rd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) = ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) |
52 |
35 51
|
breqtrd |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) |