| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalawlem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							dalawlem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalawlem.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalawlem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. HL )  | 
						
						
							| 6 | 
							
								5
							 | 
							hllatd | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. Lat )  | 
						
						
							| 7 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> P e. A )  | 
						
						
							| 8 | 
							
								
							 | 
							simp2r | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> Q e. A )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 10 | 
							
								9 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 11 | 
							
								5 7 8 10
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. A )  | 
						
						
							| 13 | 
							
								9 4
							 | 
							atbase | 
							 |-  ( T e. A -> T e. ( Base ` K ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> T e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								9 1 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) )  | 
						
						
							| 16 | 
							
								6 11 14 15
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. A )  | 
						
						
							| 18 | 
							
								9 4
							 | 
							atbase | 
							 |-  ( S e. A -> S e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> S e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								9 1 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 21 | 
							
								6 11 19 20
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 22 | 
							
								9 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								6 11 14 22
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								9 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								6 11 19 24
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								9 1 3
							 | 
							latlem12 | 
							 |-  ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) /\ ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) <-> ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ) )  | 
						
						
							| 27 | 
							
								6 11 23 25 26
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ T ) /\ ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ S ) ) <-> ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ) )  | 
						
						
							| 28 | 
							
								16 21 27
							 | 
							mpbi2and | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) )  | 
						
						
							| 29 | 
							
								9 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								6 23 25 29
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								9 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ S e. A /\ T e. A ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								5 17 12 31
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								9 1 3
							 | 
							latmlem1 | 
							 |-  ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) ) )  | 
						
						
							| 34 | 
							
								6 11 30 32 33
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .<_ ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) ) )  | 
						
						
							| 35 | 
							
								28 34
							 | 
							mpd | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) )  | 
						
						
							| 36 | 
							
								9 1 2
							 | 
							latlej2 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 37 | 
							
								6 11 19 36
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> S .<_ ( ( P .\/ Q ) .\/ S ) )  | 
						
						
							| 38 | 
							
								9 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( S e. A /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ S .<_ ( ( P .\/ Q ) .\/ S ) ) -> ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) )  | 
						
						
							| 39 | 
							
								5 17 25 14 37 38
							 | 
							syl131anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq2d | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) )  | 
						
						
							| 41 | 
							
								9 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) )  | 
						
						
							| 42 | 
							
								6 25 14 41
							 | 
							syl3anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								9 1 2 3
							 | 
							latmlej22 | 
							 |-  ( ( K e. Lat /\ ( T e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( P .\/ Q ) .\/ T ) )  | 
						
						
							| 44 | 
							
								6 14 25 11 43
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( P .\/ Q ) .\/ T ) )  | 
						
						
							| 45 | 
							
								9 1 2 3 4
							 | 
							atmod2i2 | 
							 |-  ( ( K e. HL /\ ( S e. A /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) e. ( Base ` K ) ) /\ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) .<_ ( ( P .\/ Q ) .\/ T ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) )  | 
						
						
							| 46 | 
							
								5 17 23 42 44 45
							 | 
							syl131anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( S .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 48 | 
							
								5 47
							 | 
							syl | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> K e. OL )  | 
						
						
							| 49 | 
							
								9 3
							 | 
							latmassOLD | 
							 |-  ( ( K e. OL /\ ( ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ S ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) )  | 
						
						
							| 50 | 
							
								48 23 25 32 49
							 | 
							syl13anc | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) = ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( ( P .\/ Q ) .\/ S ) ./\ ( S .\/ T ) ) ) )  | 
						
						
							| 51 | 
							
								40 46 50
							 | 
							3eqtr4rd | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( ( ( P .\/ Q ) .\/ T ) ./\ ( ( P .\/ Q ) .\/ S ) ) ./\ ( S .\/ T ) ) = ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) )  | 
						
						
							| 52 | 
							
								35 51
							 | 
							breqtrd | 
							 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( S e. A /\ T e. A ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .\/ ( ( ( P .\/ Q ) .\/ S ) ./\ T ) ) )  |