Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
8 |
|
simp22 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
9 |
|
simp32 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
10 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
12 |
|
simp21 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
13 |
5 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
14 |
12 13
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) ) |
15 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) ) |
16 |
7 11 14 15
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) ) |
17 |
|
simp31 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
18 |
5 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
19 |
17 18
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) ) |
20 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) ) |
21 |
7 16 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) ) |
22 |
|
simp23 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A ) |
23 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
24 |
6 8 22 23
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
25 |
|
simp33 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
26 |
5 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
27 |
25 26
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) ) |
28 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) |
29 |
7 24 27 28
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) |
30 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
31 |
6 22 12 30
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
32 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
33 |
6 25 17 32
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
34 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
35 |
7 31 33 34
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
36 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
37 |
7 29 35 36
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
38 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
39 |
6 9 25 38
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
40 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
41 |
7 24 39 40
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
42 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
43 |
7 41 35 42
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
44 |
5 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
45 |
8 44
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. ( Base ` K ) ) |
46 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( Q ./\ U ) e. ( Base ` K ) ) |
47 |
7 45 27 46
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ U ) e. ( Base ` K ) ) |
48 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
49 |
6 12 17 48
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
50 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) |
51 |
7 49 45 50
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) |
52 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ U ) e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
53 |
7 47 51 52
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
54 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) e. ( Base ` K ) ) |
55 |
7 14 53 54
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) e. ( Base ` K ) ) |
56 |
5 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
57 |
22 56
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. ( Base ` K ) ) |
58 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) |
59 |
7 57 29 58
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) |
60 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) e. ( Base ` K ) ) |
61 |
7 14 59 60
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) e. ( Base ` K ) ) |
62 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( Q ./\ U ) .\/ P ) e. ( Base ` K ) ) |
63 |
7 47 14 62
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ P ) e. ( Base ` K ) ) |
64 |
5 1 2 3
|
latmlej22 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) /\ ( ( Q ./\ U ) .\/ P ) e. ( Base ` K ) ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ P ) .\/ S ) ) |
65 |
7 19 16 63 64
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ P ) .\/ S ) ) |
66 |
5 2
|
latjass |
|- ( ( K e. Lat /\ ( ( Q ./\ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( Q ./\ U ) .\/ P ) .\/ S ) = ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ) |
67 |
7 47 14 19 66
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ U ) .\/ P ) .\/ S ) = ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ) |
68 |
65 67
|
breqtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ) |
69 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
70 |
7 11 49 69
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
71 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) e. ( Base ` K ) ) |
72 |
7 70 14 71
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) e. ( Base ` K ) ) |
73 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
74 |
6 12 8 73
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
75 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> S .<_ ( P .\/ S ) ) |
76 |
6 12 17 75
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( P .\/ S ) ) |
77 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) ) ) -> ( S .<_ ( P .\/ S ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) ) |
78 |
7 19 49 16 77
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .<_ ( P .\/ S ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) ) |
79 |
76 78
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) |
80 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> P .<_ ( P .\/ S ) ) |
81 |
6 12 17 80
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( P .\/ S ) ) |
82 |
5 1 2 3 4
|
atmod4i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) = ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) |
83 |
6 12 11 49 81 82
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) = ( ( ( Q .\/ T ) .\/ P ) ./\ ( P .\/ S ) ) ) |
84 |
79 83
|
breqtrrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) ) |
85 |
5 3
|
latmcom |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
86 |
7 11 49 85
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
87 |
|
simp12 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) ) |
88 |
86 87
|
eqbrtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ Q ) ) |
89 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P .<_ ( P .\/ Q ) ) |
90 |
6 12 8 89
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( P .\/ Q ) ) |
91 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ Q ) /\ P .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) .<_ ( P .\/ Q ) ) ) |
92 |
7 70 14 74 91
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ Q ) /\ P .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) .<_ ( P .\/ Q ) ) ) |
93 |
88 90 92
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .\/ P ) .<_ ( P .\/ Q ) ) |
94 |
5 1 7 21 72 74 84 93
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ Q ) ) |
95 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( Q ./\ U ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
96 |
7 47 49 95
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ S ) ) e. ( Base ` K ) ) |
97 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) /\ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
98 |
7 21 96 74 97
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( Q ./\ U ) .\/ ( P .\/ S ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ Q ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) ) |
99 |
68 94 98
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
100 |
5 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( P .\/ S ) ./\ Q ) ) = ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) |
101 |
6 12 49 45 81 100
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( P .\/ S ) ./\ Q ) ) = ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) |
102 |
101
|
oveq2d |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ ( ( P .\/ S ) ./\ Q ) ) ) = ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) ) |
103 |
5 2
|
latj12 |
|- ( ( K e. Lat /\ ( ( Q ./\ U ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ ( ( P .\/ S ) ./\ Q ) ) ) = ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
104 |
7 47 14 51 103
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( P .\/ ( ( P .\/ S ) ./\ Q ) ) ) = ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
105 |
5 1 2 3
|
latmlej12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ U e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( Q ./\ U ) .<_ ( P .\/ Q ) ) |
106 |
7 45 27 14 105
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ U ) .<_ ( P .\/ Q ) ) |
107 |
5 1 2 3 4
|
atmod1i1m |
|- ( ( ( K e. HL /\ U e. A ) /\ ( Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ ( Q ./\ U ) .<_ ( P .\/ Q ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
108 |
6 25 45 49 74 106 107
|
syl231anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ ( P .\/ Q ) ) ) = ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) ) |
109 |
102 104 108
|
3eqtr3rd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ U ) .\/ ( P .\/ S ) ) ./\ ( P .\/ Q ) ) = ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
110 |
99 109
|
breqtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
111 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> Q .<_ ( Q .\/ R ) ) |
112 |
6 8 22 111
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ R ) ) |
113 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> U .<_ ( R .\/ U ) ) |
114 |
6 22 25 113
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( R .\/ U ) ) |
115 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
116 |
7 49 11 115
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
117 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
118 |
6 22 25 117
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
119 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> Q .<_ ( Q .\/ T ) ) |
120 |
6 8 9 119
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q .<_ ( Q .\/ T ) ) |
121 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) ) -> ( Q .<_ ( Q .\/ T ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) ) |
122 |
7 45 11 49 121
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .<_ ( Q .\/ T ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) ) |
123 |
120 122
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
124 |
|
simp13 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
125 |
5 1 7 51 116 118 123 124
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ ( R .\/ U ) ) |
126 |
5 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) ) ) -> ( ( U .<_ ( R .\/ U ) /\ ( ( P .\/ S ) ./\ Q ) .<_ ( R .\/ U ) ) <-> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) ) |
127 |
7 27 51 118 126
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( U .<_ ( R .\/ U ) /\ ( ( P .\/ S ) ./\ Q ) .<_ ( R .\/ U ) ) <-> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) ) |
128 |
114 125 127
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) |
129 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ U e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) -> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
130 |
7 27 51 129
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) ) |
131 |
5 1 3
|
latmlem12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ ( ( U .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( Q .\/ R ) /\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) -> ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) ) |
132 |
7 45 24 130 118 131
|
syl122anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .<_ ( Q .\/ R ) /\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ U ) ) -> ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) ) |
133 |
112 128 132
|
mp2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
134 |
5 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ Q ) |
135 |
7 49 45 134
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ Q ) .<_ Q ) |
136 |
5 1 2 3 4
|
atmod2i2 |
|- ( ( K e. HL /\ ( U e. A /\ Q e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ Q ) e. ( Base ` K ) ) /\ ( ( P .\/ S ) ./\ Q ) .<_ Q ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) = ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
137 |
6 25 45 51 135 136
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) = ( Q ./\ ( U .\/ ( ( P .\/ S ) ./\ Q ) ) ) ) |
138 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> R .<_ ( Q .\/ R ) ) |
139 |
6 8 22 138
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R .<_ ( Q .\/ R ) ) |
140 |
5 1 2 3 4
|
atmod3i2 |
|- ( ( K e. HL /\ ( U e. A /\ R e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ R .<_ ( Q .\/ R ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) = ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
141 |
6 25 57 24 139 140
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) = ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
142 |
133 137 141
|
3brtr4d |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) |
143 |
5 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) e. ( Base ` K ) /\ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) ) |
144 |
7 53 59 14 143
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) ) |
145 |
142 144
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q ./\ U ) .\/ ( ( P .\/ S ) ./\ Q ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) |
146 |
5 1 7 21 55 61 110 145
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) |
147 |
5 2
|
latj13 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) = ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
148 |
7 14 57 29 147
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) = ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
149 |
146 148
|
breqtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
150 |
5 1 2 3
|
latmlej22 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( ( Q .\/ T ) .\/ P ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) |
151 |
7 19 16 27 150
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) |
152 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) ) |
153 |
7 29 31 152
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) ) |
154 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) e. ( Base ` K ) /\ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) ) |
155 |
7 21 153 33 154
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) /\ ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( U .\/ S ) ) <-> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) ) |
156 |
149 151 155
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
157 |
5 1 2 3
|
latmlej21 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) |
158 |
7 27 24 19 157
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) |
159 |
5 1 2 3 4
|
atmod1i1m |
|- ( ( ( K e. HL /\ U e. A ) /\ ( ( Q .\/ R ) e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) /\ ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
160 |
6 25 24 31 33 158 159
|
syl231anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
161 |
156 160
|
breqtrrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
162 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> U .<_ ( T .\/ U ) ) |
163 |
6 9 25 162
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( T .\/ U ) ) |
164 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( U .<_ ( T .\/ U ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) ) |
165 |
7 27 39 24 164
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .<_ ( T .\/ U ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) ) |
166 |
163 165
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) |
167 |
5 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) ) -> ( ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
168 |
7 29 41 35 167
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
169 |
166 168
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
170 |
5 1 7 21 37 43 161 169
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) .\/ P ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |