| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalawlem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							dalawlem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalawlem.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalawlem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL )  | 
						
						
							| 6 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) )  | 
						
						
							| 7 | 
							
								5
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A )  | 
						
						
							| 9 | 
							
								
							 | 
							simp32 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 11 | 
							
								10 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								5 8 9 11
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A )  | 
						
						
							| 14 | 
							
								
							 | 
							simp31 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A )  | 
						
						
							| 15 | 
							
								10 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								5 13 14 15
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								10 3
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) )  | 
						
						
							| 18 | 
							
								7 12 16 17
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) )  | 
						
						
							| 19 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ Q e. A /\ P e. A ) -> ( Q .\/ P ) = ( P .\/ Q ) )  | 
						
						
							| 20 | 
							
								5 8 13 19
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ P ) = ( P .\/ Q ) )  | 
						
						
							| 21 | 
							
								6 18 20
							 | 
							3brtr4d | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ P ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							eqbrtrd | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A )  | 
						
						
							| 25 | 
							
								
							 | 
							simp33 | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A )  | 
						
						
							| 26 | 
							
								1 2 3 4
							 | 
							dalawlem3 | 
							 |-  ( ( ( K e. HL /\ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ P ) /\ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( R .\/ U ) ) /\ ( Q e. A /\ P e. A /\ R e. A ) /\ ( T e. A /\ S e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) .\/ Q ) ./\ T ) .<_ ( ( ( P .\/ R ) ./\ ( S .\/ U ) ) .\/ ( ( R .\/ Q ) ./\ ( U .\/ T ) ) ) )  | 
						
						
							| 27 | 
							
								5 21 23 8 13 24 9 14 25 26
							 | 
							syl333anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) .\/ Q ) ./\ T ) .<_ ( ( ( P .\/ R ) ./\ ( S .\/ U ) ) .\/ ( ( R .\/ Q ) ./\ ( U .\/ T ) ) ) )  | 
						
						
							| 28 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) )  | 
						
						
							| 29 | 
							
								5 13 24 28
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ R ) = ( R .\/ P ) )  | 
						
						
							| 30 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ S e. A /\ U e. A ) -> ( S .\/ U ) = ( U .\/ S ) )  | 
						
						
							| 31 | 
							
								5 14 25 30
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .\/ U ) = ( U .\/ S ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							oveq12d | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ R ) ./\ ( S .\/ U ) ) = ( ( R .\/ P ) ./\ ( U .\/ S ) ) )  | 
						
						
							| 33 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ R e. A /\ Q e. A ) -> ( R .\/ Q ) = ( Q .\/ R ) )  | 
						
						
							| 34 | 
							
								5 24 8 33
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ Q ) = ( Q .\/ R ) )  | 
						
						
							| 35 | 
							
								2 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ U e. A /\ T e. A ) -> ( U .\/ T ) = ( T .\/ U ) )  | 
						
						
							| 36 | 
							
								5 25 9 35
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ T ) = ( T .\/ U ) )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							oveq12d | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ Q ) ./\ ( U .\/ T ) ) = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) )  | 
						
						
							| 38 | 
							
								32 37
							 | 
							oveq12d | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ R ) ./\ ( S .\/ U ) ) .\/ ( ( R .\/ Q ) ./\ ( U .\/ T ) ) ) = ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) )  | 
						
						
							| 39 | 
							
								10 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 40 | 
							
								5 24 13 39
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 41 | 
							
								10 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 42 | 
							
								5 25 14 41
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								10 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 44 | 
							
								7 40 42 43
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) )  | 
						
						
							| 45 | 
							
								10 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 46 | 
							
								5 8 24 45
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 47 | 
							
								10 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 48 | 
							
								5 9 25 47
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 49 | 
							
								10 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) )  | 
						
						
							| 50 | 
							
								7 46 48 49
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) )  | 
						
						
							| 51 | 
							
								10 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) )  | 
						
						
							| 52 | 
							
								7 44 50 51
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( R .\/ P ) ./\ ( U .\/ S ) ) .\/ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) )  | 
						
						
							| 53 | 
							
								38 52
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ R ) ./\ ( S .\/ U ) ) .\/ ( ( R .\/ Q ) ./\ ( U .\/ T ) ) ) = ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) )  | 
						
						
							| 54 | 
							
								27 53
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( P .\/ Q ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) .\/ Q ) ./\ T ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) )  |