Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|- .<_ = ( le ` K ) |
2 |
|
dalawlem.j |
|- .\/ = ( join ` K ) |
3 |
|
dalawlem.m |
|- ./\ = ( meet ` K ) |
4 |
|
dalawlem.a |
|- A = ( Atoms ` K ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. HL ) |
7 |
6
|
hllatd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. Lat ) |
8 |
|
simp21 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. A ) |
9 |
|
simp22 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> Q e. A ) |
10 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
12 |
|
simp32 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. A ) |
13 |
5 4
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
14 |
12 13
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> T e. ( Base ` K ) ) |
15 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ T e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
16 |
7 11 14 15
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) ) |
17 |
|
simp31 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. A ) |
18 |
5 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
19 |
17 18
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S e. ( Base ` K ) ) |
20 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) ) |
21 |
7 16 19 20
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) ) |
22 |
|
simp23 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. A ) |
23 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
24 |
6 9 22 23
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
25 |
|
simp33 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. A ) |
26 |
5 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
27 |
25 26
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U e. ( Base ` K ) ) |
28 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) |
29 |
7 24 27 28
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) |
30 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ P e. A ) -> ( R .\/ P ) e. ( Base ` K ) ) |
31 |
6 22 8 30
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ P ) e. ( Base ` K ) ) |
32 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ U e. A /\ S e. A ) -> ( U .\/ S ) e. ( Base ` K ) ) |
33 |
6 25 17 32
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .\/ S ) e. ( Base ` K ) ) |
34 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
35 |
7 31 33 34
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) |
36 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
37 |
7 29 35 36
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
38 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
39 |
6 12 25 38
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
40 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
41 |
7 24 39 40
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) ) |
42 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
43 |
7 41 35 42
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) e. ( Base ` K ) ) |
44 |
5 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
45 |
8 44
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P e. ( Base ` K ) ) |
46 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
47 |
6 8 17 46
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ S ) e. ( Base ` K ) ) |
48 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
49 |
6 9 12 48
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
50 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
51 |
7 24 49 50
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
52 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) e. ( Base ` K ) ) |
53 |
7 47 51 52
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) e. ( Base ` K ) ) |
54 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) e. ( Base ` K ) ) -> ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) e. ( Base ` K ) ) |
55 |
7 45 53 54
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) e. ( Base ` K ) ) |
56 |
5 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
57 |
22 56
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R e. ( Base ` K ) ) |
58 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) |
59 |
7 57 29 58
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) |
60 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) e. ( Base ` K ) ) |
61 |
7 45 59 60
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) e. ( Base ` K ) ) |
62 |
5 1 2 3
|
latmlej22 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ S ) ) |
63 |
7 19 16 45 62
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ S ) ) |
64 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
65 |
7 49 47 64
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) |
66 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) e. ( Base ` K ) ) |
67 |
7 45 65 66
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) e. ( Base ` K ) ) |
68 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) -> ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) e. ( Base ` K ) ) |
69 |
7 45 51 68
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) e. ( Base ` K ) ) |
70 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> S .<_ ( P .\/ S ) ) |
71 |
6 8 17 70
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> S .<_ ( P .\/ S ) ) |
72 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) ) |
73 |
7 45 49 72
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) ) |
74 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ ( P .\/ ( Q .\/ T ) ) e. ( Base ` K ) ) ) -> ( S .<_ ( P .\/ S ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ S ) .<_ ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) ) |
75 |
7 19 47 73 74
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( S .<_ ( P .\/ S ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ S ) .<_ ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) ) |
76 |
71 75
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ ( Q .\/ T ) ) ./\ S ) .<_ ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) |
77 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ T e. A ) ) -> ( ( P .\/ Q ) .\/ T ) = ( P .\/ ( Q .\/ T ) ) ) |
78 |
6 8 9 12 77
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ Q ) .\/ T ) = ( P .\/ ( Q .\/ T ) ) ) |
79 |
78
|
oveq1d |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) = ( ( P .\/ ( Q .\/ T ) ) ./\ S ) ) |
80 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> P .<_ ( P .\/ S ) ) |
81 |
6 8 17 80
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> P .<_ ( P .\/ S ) ) |
82 |
5 1 2 3 4
|
atmod1i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) |
83 |
6 8 49 47 81 82
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) = ( ( P .\/ ( Q .\/ T ) ) ./\ ( P .\/ S ) ) ) |
84 |
76 79 83
|
3brtr4d |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) ) |
85 |
5 3
|
latmcom |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
86 |
7 49 47 85
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) = ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) |
87 |
|
simp12 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) ) |
88 |
86 87
|
eqbrtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ R ) ) |
89 |
5 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ T ) ) |
90 |
7 49 47 89
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ T ) ) |
91 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) ) -> ( ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ R ) /\ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ T ) ) <-> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) |
92 |
7 65 24 49 91
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ R ) /\ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ T ) ) <-> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) |
93 |
88 90 92
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) |
94 |
5 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) |
95 |
7 65 51 45 94
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) |
96 |
93 95
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( Q .\/ T ) ./\ ( P .\/ S ) ) ) .<_ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) |
97 |
5 1 7 21 67 69 84 96
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) |
98 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) e. ( Base ` K ) ) ) -> ( ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ S ) /\ ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) <-> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( P .\/ S ) ./\ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) ) |
99 |
7 21 47 69 98
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ S ) /\ ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) <-> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( P .\/ S ) ./\ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) ) |
100 |
63 97 99
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( P .\/ S ) ./\ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) |
101 |
5 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) = ( ( P .\/ S ) ./\ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) |
102 |
6 8 47 51 81 101
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) = ( ( P .\/ S ) ./\ ( P .\/ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) |
103 |
100 102
|
breqtrrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) ) |
104 |
|
simp13 |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) |
105 |
5 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
106 |
7 47 49 105
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) ) |
107 |
5 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
108 |
6 22 25 107
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
109 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( Q .\/ R ) ./\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) ) |
110 |
7 106 108 24 109
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) -> ( ( Q .\/ R ) ./\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) ) |
111 |
104 110
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) .<_ ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
112 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
113 |
6 112
|
syl |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> K e. OL ) |
114 |
5 3
|
latm12 |
|- ( ( K e. OL /\ ( ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) ) -> ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ R ) ./\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) ) |
115 |
113 47 24 49 114
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) = ( ( Q .\/ R ) ./\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) ) ) |
116 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> R .<_ ( Q .\/ R ) ) |
117 |
6 9 22 116
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> R .<_ ( Q .\/ R ) ) |
118 |
5 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( Q .\/ R ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) /\ R .<_ ( Q .\/ R ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) = ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
119 |
6 22 24 27 117 118
|
syl131anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( R .\/ ( ( Q .\/ R ) ./\ U ) ) = ( ( Q .\/ R ) ./\ ( R .\/ U ) ) ) |
120 |
111 115 119
|
3brtr4d |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) |
121 |
5 1 2
|
latjlej2 |
|- ( ( K e. Lat /\ ( ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) e. ( Base ` K ) /\ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) -> ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) ) |
122 |
7 53 59 45 121
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) .<_ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) -> ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) ) |
123 |
120 122
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( ( P .\/ S ) ./\ ( ( Q .\/ R ) ./\ ( Q .\/ T ) ) ) ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) |
124 |
5 1 7 21 55 61 103 123
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) ) |
125 |
5 2
|
latj13 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) = ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
126 |
7 45 57 29 125
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( P .\/ ( R .\/ ( ( Q .\/ R ) ./\ U ) ) ) = ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
127 |
124 126
|
breqtrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ) |
128 |
5 1 2 3
|
latmlej22 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ T ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( U .\/ S ) ) |
129 |
7 19 16 27 128
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( U .\/ S ) ) |
130 |
5 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) ) |
131 |
7 29 31 130
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) ) |
132 |
5 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) e. ( Base ` K ) /\ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) ) -> ( ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) /\ ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( U .\/ S ) ) <-> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) ) |
133 |
7 21 131 33 132
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) /\ ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( U .\/ S ) ) <-> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) ) |
134 |
127 129 133
|
mpbi2and |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
135 |
5 1 2 3
|
latmlej21 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) |
136 |
7 27 24 19 135
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) |
137 |
5 1 2 3 4
|
atmod1i1m |
|- ( ( ( K e. HL /\ U e. A ) /\ ( ( Q .\/ R ) e. ( Base ` K ) /\ ( R .\/ P ) e. ( Base ` K ) /\ ( U .\/ S ) e. ( Base ` K ) ) /\ ( ( Q .\/ R ) ./\ U ) .<_ ( U .\/ S ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
138 |
6 25 24 31 33 136 137
|
syl231anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) = ( ( ( ( Q .\/ R ) ./\ U ) .\/ ( R .\/ P ) ) ./\ ( U .\/ S ) ) ) |
139 |
134 138
|
breqtrrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
140 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> U .<_ ( T .\/ U ) ) |
141 |
6 12 25 140
|
syl3anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> U .<_ ( T .\/ U ) ) |
142 |
5 1 3
|
latmlem2 |
|- ( ( K e. Lat /\ ( U e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) /\ ( Q .\/ R ) e. ( Base ` K ) ) ) -> ( U .<_ ( T .\/ U ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) ) |
143 |
7 27 39 24 142
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( U .<_ ( T .\/ U ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) ) |
144 |
141 143
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) ) |
145 |
5 1 2
|
latjlej1 |
|- ( ( K e. Lat /\ ( ( ( Q .\/ R ) ./\ U ) e. ( Base ` K ) /\ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) e. ( Base ` K ) /\ ( ( R .\/ P ) ./\ ( U .\/ S ) ) e. ( Base ` K ) ) ) -> ( ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
146 |
7 29 41 35 145
|
syl13anc |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .<_ ( ( Q .\/ R ) ./\ ( T .\/ U ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) ) |
147 |
144 146
|
mpd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( Q .\/ R ) ./\ U ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |
148 |
5 1 7 21 37 43 139 147
|
lattrd |
|- ( ( ( K e. HL /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( Q .\/ R ) /\ ( ( P .\/ S ) ./\ ( Q .\/ T ) ) .<_ ( R .\/ U ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) -> ( ( ( P .\/ Q ) .\/ T ) ./\ S ) .<_ ( ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .\/ ( ( R .\/ P ) ./\ ( U .\/ S ) ) ) ) |