Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem-cly.o |
|- O = ( LPlanes ` K ) |
6 |
|
dalem-cly.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
7 |
|
dalem-cly.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
8 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
9 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
10 |
1 5
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
11 2 3
|
latleeqj1 |
|- ( ( K e. Lat /\ C e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( C .<_ Y <-> ( C .\/ Y ) = Y ) ) |
13 |
8 9 10 12
|
syl3anc |
|- ( ph -> ( C .<_ Y <-> ( C .\/ Y ) = Y ) ) |
14 |
1
|
dalemclpjs |
|- ( ph -> C .<_ ( P .\/ S ) ) |
15 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
16 |
1 2 3 4 5 6
|
dalemcea |
|- ( ph -> C e. A ) |
17 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
18 |
1
|
dalempea |
|- ( ph -> P e. A ) |
19 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
20 |
1
|
dalem-clpjq |
|- ( ph -> -. C .<_ ( P .\/ Q ) ) |
21 |
2 3 4
|
atnlej1 |
|- ( ( K e. HL /\ ( C e. A /\ P e. A /\ Q e. A ) /\ -. C .<_ ( P .\/ Q ) ) -> C =/= P ) |
22 |
15 16 18 19 20 21
|
syl131anc |
|- ( ph -> C =/= P ) |
23 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( C e. A /\ S e. A /\ P e. A ) /\ C =/= P ) -> ( C .<_ ( P .\/ S ) -> S .<_ ( P .\/ C ) ) ) |
24 |
15 16 17 18 22 23
|
syl131anc |
|- ( ph -> ( C .<_ ( P .\/ S ) -> S .<_ ( P .\/ C ) ) ) |
25 |
14 24
|
mpd |
|- ( ph -> S .<_ ( P .\/ C ) ) |
26 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ C e. A /\ P e. A ) -> ( C .\/ P ) = ( P .\/ C ) ) |
27 |
15 16 18 26
|
syl3anc |
|- ( ph -> ( C .\/ P ) = ( P .\/ C ) ) |
28 |
25 27
|
breqtrrd |
|- ( ph -> S .<_ ( C .\/ P ) ) |
29 |
1
|
dalemclqjt |
|- ( ph -> C .<_ ( Q .\/ T ) ) |
30 |
1
|
dalemtea |
|- ( ph -> T e. A ) |
31 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
32 |
|
simp312 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( Q .\/ R ) ) |
33 |
1 32
|
sylbi |
|- ( ph -> -. C .<_ ( Q .\/ R ) ) |
34 |
2 3 4
|
atnlej1 |
|- ( ( K e. HL /\ ( C e. A /\ Q e. A /\ R e. A ) /\ -. C .<_ ( Q .\/ R ) ) -> C =/= Q ) |
35 |
15 16 19 31 33 34
|
syl131anc |
|- ( ph -> C =/= Q ) |
36 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( C e. A /\ T e. A /\ Q e. A ) /\ C =/= Q ) -> ( C .<_ ( Q .\/ T ) -> T .<_ ( Q .\/ C ) ) ) |
37 |
15 16 30 19 35 36
|
syl131anc |
|- ( ph -> ( C .<_ ( Q .\/ T ) -> T .<_ ( Q .\/ C ) ) ) |
38 |
29 37
|
mpd |
|- ( ph -> T .<_ ( Q .\/ C ) ) |
39 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ C e. A /\ Q e. A ) -> ( C .\/ Q ) = ( Q .\/ C ) ) |
40 |
15 16 19 39
|
syl3anc |
|- ( ph -> ( C .\/ Q ) = ( Q .\/ C ) ) |
41 |
38 40
|
breqtrrd |
|- ( ph -> T .<_ ( C .\/ Q ) ) |
42 |
1 4
|
dalemseb |
|- ( ph -> S e. ( Base ` K ) ) |
43 |
11 3 4
|
hlatjcl |
|- ( ( K e. HL /\ C e. A /\ P e. A ) -> ( C .\/ P ) e. ( Base ` K ) ) |
44 |
15 16 18 43
|
syl3anc |
|- ( ph -> ( C .\/ P ) e. ( Base ` K ) ) |
45 |
1 4
|
dalemteb |
|- ( ph -> T e. ( Base ` K ) ) |
46 |
11 3 4
|
hlatjcl |
|- ( ( K e. HL /\ C e. A /\ Q e. A ) -> ( C .\/ Q ) e. ( Base ` K ) ) |
47 |
15 16 19 46
|
syl3anc |
|- ( ph -> ( C .\/ Q ) e. ( Base ` K ) ) |
48 |
11 2 3
|
latjlej12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( C .\/ P ) e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ ( C .\/ Q ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( C .\/ P ) /\ T .<_ ( C .\/ Q ) ) -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) ) |
49 |
8 42 44 45 47 48
|
syl122anc |
|- ( ph -> ( ( S .<_ ( C .\/ P ) /\ T .<_ ( C .\/ Q ) ) -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) ) |
50 |
28 41 49
|
mp2and |
|- ( ph -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) |
51 |
1 4
|
dalempeb |
|- ( ph -> P e. ( Base ` K ) ) |
52 |
1 4
|
dalemqeb |
|- ( ph -> Q e. ( Base ` K ) ) |
53 |
11 3
|
latjjdi |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( C .\/ ( P .\/ Q ) ) = ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) |
54 |
8 9 51 52 53
|
syl13anc |
|- ( ph -> ( C .\/ ( P .\/ Q ) ) = ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) |
55 |
50 54
|
breqtrrd |
|- ( ph -> ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) ) |
56 |
1
|
dalemclrju |
|- ( ph -> C .<_ ( R .\/ U ) ) |
57 |
1
|
dalemuea |
|- ( ph -> U e. A ) |
58 |
|
simp313 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( R .\/ P ) ) |
59 |
1 58
|
sylbi |
|- ( ph -> -. C .<_ ( R .\/ P ) ) |
60 |
2 3 4
|
atnlej1 |
|- ( ( K e. HL /\ ( C e. A /\ R e. A /\ P e. A ) /\ -. C .<_ ( R .\/ P ) ) -> C =/= R ) |
61 |
15 16 31 18 59 60
|
syl131anc |
|- ( ph -> C =/= R ) |
62 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( C e. A /\ U e. A /\ R e. A ) /\ C =/= R ) -> ( C .<_ ( R .\/ U ) -> U .<_ ( R .\/ C ) ) ) |
63 |
15 16 57 31 61 62
|
syl131anc |
|- ( ph -> ( C .<_ ( R .\/ U ) -> U .<_ ( R .\/ C ) ) ) |
64 |
56 63
|
mpd |
|- ( ph -> U .<_ ( R .\/ C ) ) |
65 |
3 4
|
hlatjcom |
|- ( ( K e. HL /\ C e. A /\ R e. A ) -> ( C .\/ R ) = ( R .\/ C ) ) |
66 |
15 16 31 65
|
syl3anc |
|- ( ph -> ( C .\/ R ) = ( R .\/ C ) ) |
67 |
64 66
|
breqtrrd |
|- ( ph -> U .<_ ( C .\/ R ) ) |
68 |
1 3 4
|
dalemsjteb |
|- ( ph -> ( S .\/ T ) e. ( Base ` K ) ) |
69 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
70 |
11 3
|
latjcl |
|- ( ( K e. Lat /\ C e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
71 |
8 9 69 70
|
syl3anc |
|- ( ph -> ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) |
72 |
1 4
|
dalemueb |
|- ( ph -> U e. ( Base ` K ) ) |
73 |
11 3 4
|
hlatjcl |
|- ( ( K e. HL /\ C e. A /\ R e. A ) -> ( C .\/ R ) e. ( Base ` K ) ) |
74 |
15 16 31 73
|
syl3anc |
|- ( ph -> ( C .\/ R ) e. ( Base ` K ) ) |
75 |
11 2 3
|
latjlej12 |
|- ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) /\ ( U e. ( Base ` K ) /\ ( C .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) /\ U .<_ ( C .\/ R ) ) -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) ) |
76 |
8 68 71 72 74 75
|
syl122anc |
|- ( ph -> ( ( ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) /\ U .<_ ( C .\/ R ) ) -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) ) |
77 |
55 67 76
|
mp2and |
|- ( ph -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) |
78 |
1 4
|
dalemreb |
|- ( ph -> R e. ( Base ` K ) ) |
79 |
11 3
|
latjjdi |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( C .\/ ( ( P .\/ Q ) .\/ R ) ) = ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) |
80 |
8 9 69 78 79
|
syl13anc |
|- ( ph -> ( C .\/ ( ( P .\/ Q ) .\/ R ) ) = ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) |
81 |
77 80
|
breqtrrd |
|- ( ph -> ( ( S .\/ T ) .\/ U ) .<_ ( C .\/ ( ( P .\/ Q ) .\/ R ) ) ) |
82 |
6
|
oveq2i |
|- ( C .\/ Y ) = ( C .\/ ( ( P .\/ Q ) .\/ R ) ) |
83 |
81 7 82
|
3brtr4g |
|- ( ph -> Z .<_ ( C .\/ Y ) ) |
84 |
|
breq2 |
|- ( ( C .\/ Y ) = Y -> ( Z .<_ ( C .\/ Y ) <-> Z .<_ Y ) ) |
85 |
83 84
|
syl5ibcom |
|- ( ph -> ( ( C .\/ Y ) = Y -> Z .<_ Y ) ) |
86 |
13 85
|
sylbid |
|- ( ph -> ( C .<_ Y -> Z .<_ Y ) ) |
87 |
1
|
dalemzeo |
|- ( ph -> Z e. O ) |
88 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
89 |
2 5
|
lplncmp |
|- ( ( K e. HL /\ Z e. O /\ Y e. O ) -> ( Z .<_ Y <-> Z = Y ) ) |
90 |
15 87 88 89
|
syl3anc |
|- ( ph -> ( Z .<_ Y <-> Z = Y ) ) |
91 |
|
eqcom |
|- ( Z = Y <-> Y = Z ) |
92 |
90 91
|
bitrdi |
|- ( ph -> ( Z .<_ Y <-> Y = Z ) ) |
93 |
86 92
|
sylibd |
|- ( ph -> ( C .<_ Y -> Y = Z ) ) |
94 |
93
|
necon3ad |
|- ( ph -> ( Y =/= Z -> -. C .<_ Y ) ) |
95 |
94
|
imp |
|- ( ( ph /\ Y =/= Z ) -> -. C .<_ Y ) |