| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalema.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalemc.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalemc.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalemc.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem-cly.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem-cly.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem-cly.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 8 | 
							
								1
							 | 
							dalemkelat | 
							 |-  ( ph -> K e. Lat )  | 
						
						
							| 9 | 
							
								1 4
							 | 
							dalemceb | 
							 |-  ( ph -> C e. ( Base ` K ) )  | 
						
						
							| 10 | 
							
								1 5
							 | 
							dalemyeb | 
							 |-  ( ph -> Y e. ( Base ` K ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 12 | 
							
								11 2 3
							 | 
							latleeqj1 | 
							 |-  ( ( K e. Lat /\ C e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( C .<_ Y <-> ( C .\/ Y ) = Y ) )  | 
						
						
							| 13 | 
							
								8 9 10 12
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .<_ Y <-> ( C .\/ Y ) = Y ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							dalemclpjs | 
							 |-  ( ph -> C .<_ ( P .\/ S ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6
							 | 
							dalemcea | 
							 |-  ( ph -> C e. A )  | 
						
						
							| 17 | 
							
								1
							 | 
							dalemsea | 
							 |-  ( ph -> S e. A )  | 
						
						
							| 18 | 
							
								1
							 | 
							dalempea | 
							 |-  ( ph -> P e. A )  | 
						
						
							| 19 | 
							
								1
							 | 
							dalemqea | 
							 |-  ( ph -> Q e. A )  | 
						
						
							| 20 | 
							
								1
							 | 
							dalem-clpjq | 
							 |-  ( ph -> -. C .<_ ( P .\/ Q ) )  | 
						
						
							| 21 | 
							
								2 3 4
							 | 
							atnlej1 | 
							 |-  ( ( K e. HL /\ ( C e. A /\ P e. A /\ Q e. A ) /\ -. C .<_ ( P .\/ Q ) ) -> C =/= P )  | 
						
						
							| 22 | 
							
								15 16 18 19 20 21
							 | 
							syl131anc | 
							 |-  ( ph -> C =/= P )  | 
						
						
							| 23 | 
							
								2 3 4
							 | 
							hlatexch1 | 
							 |-  ( ( K e. HL /\ ( C e. A /\ S e. A /\ P e. A ) /\ C =/= P ) -> ( C .<_ ( P .\/ S ) -> S .<_ ( P .\/ C ) ) )  | 
						
						
							| 24 | 
							
								15 16 17 18 22 23
							 | 
							syl131anc | 
							 |-  ( ph -> ( C .<_ ( P .\/ S ) -> S .<_ ( P .\/ C ) ) )  | 
						
						
							| 25 | 
							
								14 24
							 | 
							mpd | 
							 |-  ( ph -> S .<_ ( P .\/ C ) )  | 
						
						
							| 26 | 
							
								3 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ C e. A /\ P e. A ) -> ( C .\/ P ) = ( P .\/ C ) )  | 
						
						
							| 27 | 
							
								15 16 18 26
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .\/ P ) = ( P .\/ C ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							breqtrrd | 
							 |-  ( ph -> S .<_ ( C .\/ P ) )  | 
						
						
							| 29 | 
							
								1
							 | 
							dalemclqjt | 
							 |-  ( ph -> C .<_ ( Q .\/ T ) )  | 
						
						
							| 30 | 
							
								1
							 | 
							dalemtea | 
							 |-  ( ph -> T e. A )  | 
						
						
							| 31 | 
							
								1
							 | 
							dalemrea | 
							 |-  ( ph -> R e. A )  | 
						
						
							| 32 | 
							
								
							 | 
							simp312 | 
							 |-  ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( Q .\/ R ) )  | 
						
						
							| 33 | 
							
								1 32
							 | 
							sylbi | 
							 |-  ( ph -> -. C .<_ ( Q .\/ R ) )  | 
						
						
							| 34 | 
							
								2 3 4
							 | 
							atnlej1 | 
							 |-  ( ( K e. HL /\ ( C e. A /\ Q e. A /\ R e. A ) /\ -. C .<_ ( Q .\/ R ) ) -> C =/= Q )  | 
						
						
							| 35 | 
							
								15 16 19 31 33 34
							 | 
							syl131anc | 
							 |-  ( ph -> C =/= Q )  | 
						
						
							| 36 | 
							
								2 3 4
							 | 
							hlatexch1 | 
							 |-  ( ( K e. HL /\ ( C e. A /\ T e. A /\ Q e. A ) /\ C =/= Q ) -> ( C .<_ ( Q .\/ T ) -> T .<_ ( Q .\/ C ) ) )  | 
						
						
							| 37 | 
							
								15 16 30 19 35 36
							 | 
							syl131anc | 
							 |-  ( ph -> ( C .<_ ( Q .\/ T ) -> T .<_ ( Q .\/ C ) ) )  | 
						
						
							| 38 | 
							
								29 37
							 | 
							mpd | 
							 |-  ( ph -> T .<_ ( Q .\/ C ) )  | 
						
						
							| 39 | 
							
								3 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ C e. A /\ Q e. A ) -> ( C .\/ Q ) = ( Q .\/ C ) )  | 
						
						
							| 40 | 
							
								15 16 19 39
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .\/ Q ) = ( Q .\/ C ) )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							breqtrrd | 
							 |-  ( ph -> T .<_ ( C .\/ Q ) )  | 
						
						
							| 42 | 
							
								1 4
							 | 
							dalemseb | 
							 |-  ( ph -> S e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								11 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ C e. A /\ P e. A ) -> ( C .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 44 | 
							
								15 16 18 43
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 45 | 
							
								1 4
							 | 
							dalemteb | 
							 |-  ( ph -> T e. ( Base ` K ) )  | 
						
						
							| 46 | 
							
								11 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ C e. A /\ Q e. A ) -> ( C .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 47 | 
							
								15 16 19 46
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 48 | 
							
								11 2 3
							 | 
							latjlej12 | 
							 |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( C .\/ P ) e. ( Base ` K ) ) /\ ( T e. ( Base ` K ) /\ ( C .\/ Q ) e. ( Base ` K ) ) ) -> ( ( S .<_ ( C .\/ P ) /\ T .<_ ( C .\/ Q ) ) -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) )  | 
						
						
							| 49 | 
							
								8 42 44 45 47 48
							 | 
							syl122anc | 
							 |-  ( ph -> ( ( S .<_ ( C .\/ P ) /\ T .<_ ( C .\/ Q ) ) -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) ) )  | 
						
						
							| 50 | 
							
								28 41 49
							 | 
							mp2and | 
							 |-  ( ph -> ( S .\/ T ) .<_ ( ( C .\/ P ) .\/ ( C .\/ Q ) ) )  | 
						
						
							| 51 | 
							
								1 4
							 | 
							dalempeb | 
							 |-  ( ph -> P e. ( Base ` K ) )  | 
						
						
							| 52 | 
							
								1 4
							 | 
							dalemqeb | 
							 |-  ( ph -> Q e. ( Base ` K ) )  | 
						
						
							| 53 | 
							
								11 3
							 | 
							latjjdi | 
							 |-  ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) ) -> ( C .\/ ( P .\/ Q ) ) = ( ( C .\/ P ) .\/ ( C .\/ Q ) ) )  | 
						
						
							| 54 | 
							
								8 9 51 52 53
							 | 
							syl13anc | 
							 |-  ( ph -> ( C .\/ ( P .\/ Q ) ) = ( ( C .\/ P ) .\/ ( C .\/ Q ) ) )  | 
						
						
							| 55 | 
							
								50 54
							 | 
							breqtrrd | 
							 |-  ( ph -> ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) )  | 
						
						
							| 56 | 
							
								1
							 | 
							dalemclrju | 
							 |-  ( ph -> C .<_ ( R .\/ U ) )  | 
						
						
							| 57 | 
							
								1
							 | 
							dalemuea | 
							 |-  ( ph -> U e. A )  | 
						
						
							| 58 | 
							
								
							 | 
							simp313 | 
							 |-  ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( R .\/ P ) )  | 
						
						
							| 59 | 
							
								1 58
							 | 
							sylbi | 
							 |-  ( ph -> -. C .<_ ( R .\/ P ) )  | 
						
						
							| 60 | 
							
								2 3 4
							 | 
							atnlej1 | 
							 |-  ( ( K e. HL /\ ( C e. A /\ R e. A /\ P e. A ) /\ -. C .<_ ( R .\/ P ) ) -> C =/= R )  | 
						
						
							| 61 | 
							
								15 16 31 18 59 60
							 | 
							syl131anc | 
							 |-  ( ph -> C =/= R )  | 
						
						
							| 62 | 
							
								2 3 4
							 | 
							hlatexch1 | 
							 |-  ( ( K e. HL /\ ( C e. A /\ U e. A /\ R e. A ) /\ C =/= R ) -> ( C .<_ ( R .\/ U ) -> U .<_ ( R .\/ C ) ) )  | 
						
						
							| 63 | 
							
								15 16 57 31 61 62
							 | 
							syl131anc | 
							 |-  ( ph -> ( C .<_ ( R .\/ U ) -> U .<_ ( R .\/ C ) ) )  | 
						
						
							| 64 | 
							
								56 63
							 | 
							mpd | 
							 |-  ( ph -> U .<_ ( R .\/ C ) )  | 
						
						
							| 65 | 
							
								3 4
							 | 
							hlatjcom | 
							 |-  ( ( K e. HL /\ C e. A /\ R e. A ) -> ( C .\/ R ) = ( R .\/ C ) )  | 
						
						
							| 66 | 
							
								15 16 31 65
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .\/ R ) = ( R .\/ C ) )  | 
						
						
							| 67 | 
							
								64 66
							 | 
							breqtrrd | 
							 |-  ( ph -> U .<_ ( C .\/ R ) )  | 
						
						
							| 68 | 
							
								1 3 4
							 | 
							dalemsjteb | 
							 |-  ( ph -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 69 | 
							
								1 3 4
							 | 
							dalempjqeb | 
							 |-  ( ph -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 70 | 
							
								11 3
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ C e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) )  | 
						
						
							| 71 | 
							
								8 9 69 70
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) )  | 
						
						
							| 72 | 
							
								1 4
							 | 
							dalemueb | 
							 |-  ( ph -> U e. ( Base ` K ) )  | 
						
						
							| 73 | 
							
								11 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ C e. A /\ R e. A ) -> ( C .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 74 | 
							
								15 16 31 73
							 | 
							syl3anc | 
							 |-  ( ph -> ( C .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 75 | 
							
								11 2 3
							 | 
							latjlej12 | 
							 |-  ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( C .\/ ( P .\/ Q ) ) e. ( Base ` K ) ) /\ ( U e. ( Base ` K ) /\ ( C .\/ R ) e. ( Base ` K ) ) ) -> ( ( ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) /\ U .<_ ( C .\/ R ) ) -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) )  | 
						
						
							| 76 | 
							
								8 68 71 72 74 75
							 | 
							syl122anc | 
							 |-  ( ph -> ( ( ( S .\/ T ) .<_ ( C .\/ ( P .\/ Q ) ) /\ U .<_ ( C .\/ R ) ) -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) ) )  | 
						
						
							| 77 | 
							
								55 67 76
							 | 
							mp2and | 
							 |-  ( ph -> ( ( S .\/ T ) .\/ U ) .<_ ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) )  | 
						
						
							| 78 | 
							
								1 4
							 | 
							dalemreb | 
							 |-  ( ph -> R e. ( Base ` K ) )  | 
						
						
							| 79 | 
							
								11 3
							 | 
							latjjdi | 
							 |-  ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) ) -> ( C .\/ ( ( P .\/ Q ) .\/ R ) ) = ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) )  | 
						
						
							| 80 | 
							
								8 9 69 78 79
							 | 
							syl13anc | 
							 |-  ( ph -> ( C .\/ ( ( P .\/ Q ) .\/ R ) ) = ( ( C .\/ ( P .\/ Q ) ) .\/ ( C .\/ R ) ) )  | 
						
						
							| 81 | 
							
								77 80
							 | 
							breqtrrd | 
							 |-  ( ph -> ( ( S .\/ T ) .\/ U ) .<_ ( C .\/ ( ( P .\/ Q ) .\/ R ) ) )  | 
						
						
							| 82 | 
							
								6
							 | 
							oveq2i | 
							 |-  ( C .\/ Y ) = ( C .\/ ( ( P .\/ Q ) .\/ R ) )  | 
						
						
							| 83 | 
							
								81 7 82
							 | 
							3brtr4g | 
							 |-  ( ph -> Z .<_ ( C .\/ Y ) )  | 
						
						
							| 84 | 
							
								
							 | 
							breq2 | 
							 |-  ( ( C .\/ Y ) = Y -> ( Z .<_ ( C .\/ Y ) <-> Z .<_ Y ) )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							syl5ibcom | 
							 |-  ( ph -> ( ( C .\/ Y ) = Y -> Z .<_ Y ) )  | 
						
						
							| 86 | 
							
								13 85
							 | 
							sylbid | 
							 |-  ( ph -> ( C .<_ Y -> Z .<_ Y ) )  | 
						
						
							| 87 | 
							
								1
							 | 
							dalemzeo | 
							 |-  ( ph -> Z e. O )  | 
						
						
							| 88 | 
							
								1
							 | 
							dalemyeo | 
							 |-  ( ph -> Y e. O )  | 
						
						
							| 89 | 
							
								2 5
							 | 
							lplncmp | 
							 |-  ( ( K e. HL /\ Z e. O /\ Y e. O ) -> ( Z .<_ Y <-> Z = Y ) )  | 
						
						
							| 90 | 
							
								15 87 88 89
							 | 
							syl3anc | 
							 |-  ( ph -> ( Z .<_ Y <-> Z = Y ) )  | 
						
						
							| 91 | 
							
								
							 | 
							eqcom | 
							 |-  ( Z = Y <-> Y = Z )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							bitrdi | 
							 |-  ( ph -> ( Z .<_ Y <-> Y = Z ) )  | 
						
						
							| 93 | 
							
								86 92
							 | 
							sylibd | 
							 |-  ( ph -> ( C .<_ Y -> Y = Z ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							necon3ad | 
							 |-  ( ph -> ( Y =/= Z -> -. C .<_ Y ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							imp | 
							 |-  ( ( ph /\ Y =/= Z ) -> -. C .<_ Y )  |