Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem1.o |
|- O = ( LPlanes ` K ) |
6 |
|
dalem1.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
7 |
1
|
dalemclpjs |
|- ( ph -> C .<_ ( P .\/ S ) ) |
8 |
1
|
dalem-clpjq |
|- ( ph -> -. C .<_ ( P .\/ Q ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> -. C .<_ ( P .\/ Q ) ) |
10 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
11 |
1
|
dalempea |
|- ( ph -> P e. A ) |
12 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
13 |
2 3 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> P .<_ ( P .\/ S ) ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ph -> P .<_ ( P .\/ S ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> P .<_ ( P .\/ S ) ) |
16 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
17 |
1
|
dalemtea |
|- ( ph -> T e. A ) |
18 |
2 3 4
|
hlatlej1 |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> Q .<_ ( Q .\/ T ) ) |
19 |
10 16 17 18
|
syl3anc |
|- ( ph -> Q .<_ ( Q .\/ T ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> Q .<_ ( Q .\/ T ) ) |
21 |
|
simpr |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> ( P .\/ S ) = ( Q .\/ T ) ) |
22 |
20 21
|
breqtrrd |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> Q .<_ ( P .\/ S ) ) |
23 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
24 |
1 4
|
dalempeb |
|- ( ph -> P e. ( Base ` K ) ) |
25 |
1 4
|
dalemqeb |
|- ( ph -> Q e. ( Base ` K ) ) |
26 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
27 |
26 3 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
28 |
10 11 12 27
|
syl3anc |
|- ( ph -> ( P .\/ S ) e. ( Base ` K ) ) |
29 |
26 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( P .\/ S ) /\ Q .<_ ( P .\/ S ) ) <-> ( P .\/ Q ) .<_ ( P .\/ S ) ) ) |
30 |
23 24 25 28 29
|
syl13anc |
|- ( ph -> ( ( P .<_ ( P .\/ S ) /\ Q .<_ ( P .\/ S ) ) <-> ( P .\/ Q ) .<_ ( P .\/ S ) ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> ( ( P .<_ ( P .\/ S ) /\ Q .<_ ( P .\/ S ) ) <-> ( P .\/ Q ) .<_ ( P .\/ S ) ) ) |
32 |
15 22 31
|
mpbi2and |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> ( P .\/ Q ) .<_ ( P .\/ S ) ) |
33 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
34 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
35 |
3 4 5 6
|
lplnri1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ Y e. O ) -> P =/= Q ) |
36 |
10 11 16 33 34 35
|
syl131anc |
|- ( ph -> P =/= Q ) |
37 |
2 3 4
|
ps-1 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( P e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .<_ ( P .\/ S ) <-> ( P .\/ Q ) = ( P .\/ S ) ) ) |
38 |
10 11 16 36 11 12 37
|
syl132anc |
|- ( ph -> ( ( P .\/ Q ) .<_ ( P .\/ S ) <-> ( P .\/ Q ) = ( P .\/ S ) ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> ( ( P .\/ Q ) .<_ ( P .\/ S ) <-> ( P .\/ Q ) = ( P .\/ S ) ) ) |
40 |
32 39
|
mpbid |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> ( P .\/ Q ) = ( P .\/ S ) ) |
41 |
40
|
breq2d |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> ( C .<_ ( P .\/ Q ) <-> C .<_ ( P .\/ S ) ) ) |
42 |
9 41
|
mtbid |
|- ( ( ph /\ ( P .\/ S ) = ( Q .\/ T ) ) -> -. C .<_ ( P .\/ S ) ) |
43 |
42
|
ex |
|- ( ph -> ( ( P .\/ S ) = ( Q .\/ T ) -> -. C .<_ ( P .\/ S ) ) ) |
44 |
43
|
necon2ad |
|- ( ph -> ( C .<_ ( P .\/ S ) -> ( P .\/ S ) =/= ( Q .\/ T ) ) ) |
45 |
7 44
|
mpd |
|- ( ph -> ( P .\/ S ) =/= ( Q .\/ T ) ) |