Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem10.m |
|- ./\ = ( meet ` K ) |
6 |
|
dalem10.o |
|- O = ( LPlanes ` K ) |
7 |
|
dalem10.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
8 |
|
dalem10.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
9 |
|
dalem10.x |
|- X = ( Y ./\ Z ) |
10 |
|
dalem10.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
11 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
12 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
13 |
1 4
|
dalemreb |
|- ( ph -> R e. ( Base ` K ) ) |
14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
15 |
14 2 3
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ R ) ) |
16 |
11 12 13 15
|
syl3anc |
|- ( ph -> ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ R ) ) |
17 |
1 3 4
|
dalemsjteb |
|- ( ph -> ( S .\/ T ) e. ( Base ` K ) ) |
18 |
1 4
|
dalemueb |
|- ( ph -> U e. ( Base ` K ) ) |
19 |
14 2 3
|
latlej1 |
|- ( ( K e. Lat /\ ( S .\/ T ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ U ) ) |
20 |
11 17 18 19
|
syl3anc |
|- ( ph -> ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ U ) ) |
21 |
1 6
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
22 |
7 21
|
eqeltrrid |
|- ( ph -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
23 |
1
|
dalemzeo |
|- ( ph -> Z e. O ) |
24 |
14 6
|
lplnbase |
|- ( Z e. O -> Z e. ( Base ` K ) ) |
25 |
23 24
|
syl |
|- ( ph -> Z e. ( Base ` K ) ) |
26 |
8 25
|
eqeltrrid |
|- ( ph -> ( ( S .\/ T ) .\/ U ) e. ( Base ` K ) ) |
27 |
14 2 5
|
latmlem12 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) /\ ( ( S .\/ T ) e. ( Base ` K ) /\ ( ( S .\/ T ) .\/ U ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ R ) /\ ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ R ) ./\ ( ( S .\/ T ) .\/ U ) ) ) ) |
28 |
11 12 22 17 26 27
|
syl122anc |
|- ( ph -> ( ( ( P .\/ Q ) .<_ ( ( P .\/ Q ) .\/ R ) /\ ( S .\/ T ) .<_ ( ( S .\/ T ) .\/ U ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ R ) ./\ ( ( S .\/ T ) .\/ U ) ) ) ) |
29 |
16 20 28
|
mp2and |
|- ( ph -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( ( ( P .\/ Q ) .\/ R ) ./\ ( ( S .\/ T ) .\/ U ) ) ) |
30 |
7 8
|
oveq12i |
|- ( Y ./\ Z ) = ( ( ( P .\/ Q ) .\/ R ) ./\ ( ( S .\/ T ) .\/ U ) ) |
31 |
9 30
|
eqtri |
|- X = ( ( ( P .\/ Q ) .\/ R ) ./\ ( ( S .\/ T ) .\/ U ) ) |
32 |
29 10 31
|
3brtr4g |
|- ( ph -> D .<_ X ) |