| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dalem13.o |
|- O = ( LPlanes ` K ) |
| 6 |
|
dalem13.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
| 7 |
|
dalem13.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
| 8 |
|
dalem13.w |
|- W = ( Y .\/ C ) |
| 9 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> K e. HL ) |
| 11 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> Y e. O ) |
| 13 |
1
|
dalemzeo |
|- ( ph -> Z e. O ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> Z e. O ) |
| 15 |
|
eqid |
|- ( LVols ` K ) = ( LVols ` K ) |
| 16 |
1 2 3 4 5 15 6 7 8
|
dalem9 |
|- ( ( ph /\ Y =/= Z ) -> W e. ( LVols ` K ) ) |
| 17 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
| 18 |
1 5
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
| 19 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
| 20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 21 |
20 2 3
|
latlej1 |
|- ( ( K e. Lat /\ Y e. ( Base ` K ) /\ C e. ( Base ` K ) ) -> Y .<_ ( Y .\/ C ) ) |
| 22 |
17 18 19 21
|
syl3anc |
|- ( ph -> Y .<_ ( Y .\/ C ) ) |
| 23 |
22 8
|
breqtrrdi |
|- ( ph -> Y .<_ W ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> Y .<_ W ) |
| 25 |
1 2 3 4 5 6 7 8
|
dalem8 |
|- ( ph -> Z .<_ W ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ Y =/= Z ) -> Z .<_ W ) |
| 27 |
|
simpr |
|- ( ( ph /\ Y =/= Z ) -> Y =/= Z ) |
| 28 |
2 3 5 15
|
2lplnj |
|- ( ( K e. HL /\ ( Y e. O /\ Z e. O /\ W e. ( LVols ` K ) ) /\ ( Y .<_ W /\ Z .<_ W /\ Y =/= Z ) ) -> ( Y .\/ Z ) = W ) |
| 29 |
10 12 14 16 24 26 27 28
|
syl133anc |
|- ( ( ph /\ Y =/= Z ) -> ( Y .\/ Z ) = W ) |