| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
| 5 |
|
dalem17.o |
|- O = ( LPlanes ` K ) |
| 6 |
|
dalem17.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
| 7 |
|
dalem17.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
| 8 |
1
|
dalemclrju |
|- ( ph -> C .<_ ( R .\/ U ) ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ Y = Z ) -> C .<_ ( R .\/ U ) ) |
| 10 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
| 11 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 12 |
1 4
|
dalemreb |
|- ( ph -> R e. ( Base ` K ) ) |
| 13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 14 |
13 2 3
|
latlej2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> R .<_ ( ( P .\/ Q ) .\/ R ) ) |
| 15 |
10 11 12 14
|
syl3anc |
|- ( ph -> R .<_ ( ( P .\/ Q ) .\/ R ) ) |
| 16 |
15 6
|
breqtrrdi |
|- ( ph -> R .<_ Y ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ Y = Z ) -> R .<_ Y ) |
| 18 |
1 3 4
|
dalemsjteb |
|- ( ph -> ( S .\/ T ) e. ( Base ` K ) ) |
| 19 |
1 4
|
dalemueb |
|- ( ph -> U e. ( Base ` K ) ) |
| 20 |
13 2 3
|
latlej2 |
|- ( ( K e. Lat /\ ( S .\/ T ) e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> U .<_ ( ( S .\/ T ) .\/ U ) ) |
| 21 |
10 18 19 20
|
syl3anc |
|- ( ph -> U .<_ ( ( S .\/ T ) .\/ U ) ) |
| 22 |
21 7
|
breqtrrdi |
|- ( ph -> U .<_ Z ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ Y = Z ) -> U .<_ Z ) |
| 24 |
|
simpr |
|- ( ( ph /\ Y = Z ) -> Y = Z ) |
| 25 |
23 24
|
breqtrrd |
|- ( ( ph /\ Y = Z ) -> U .<_ Y ) |
| 26 |
1 5
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
| 27 |
13 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ U e. ( Base ` K ) /\ Y e. ( Base ` K ) ) ) -> ( ( R .<_ Y /\ U .<_ Y ) <-> ( R .\/ U ) .<_ Y ) ) |
| 28 |
10 12 19 26 27
|
syl13anc |
|- ( ph -> ( ( R .<_ Y /\ U .<_ Y ) <-> ( R .\/ U ) .<_ Y ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ Y = Z ) -> ( ( R .<_ Y /\ U .<_ Y ) <-> ( R .\/ U ) .<_ Y ) ) |
| 30 |
17 25 29
|
mpbi2and |
|- ( ( ph /\ Y = Z ) -> ( R .\/ U ) .<_ Y ) |
| 31 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
| 32 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
| 33 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
| 34 |
1
|
dalemuea |
|- ( ph -> U e. A ) |
| 35 |
13 3 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 36 |
32 33 34 35
|
syl3anc |
|- ( ph -> ( R .\/ U ) e. ( Base ` K ) ) |
| 37 |
13 2
|
lattr |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) /\ Y e. ( Base ` K ) ) ) -> ( ( C .<_ ( R .\/ U ) /\ ( R .\/ U ) .<_ Y ) -> C .<_ Y ) ) |
| 38 |
10 31 36 26 37
|
syl13anc |
|- ( ph -> ( ( C .<_ ( R .\/ U ) /\ ( R .\/ U ) .<_ Y ) -> C .<_ Y ) ) |
| 39 |
38
|
adantr |
|- ( ( ph /\ Y = Z ) -> ( ( C .<_ ( R .\/ U ) /\ ( R .\/ U ) .<_ Y ) -> C .<_ Y ) ) |
| 40 |
9 30 39
|
mp2and |
|- ( ( ph /\ Y = Z ) -> C .<_ Y ) |