| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalem.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem.ps | 
							 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem22.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem22.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem22.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( meet ` K ) = ( meet ` K )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 9 6 7 8
							 | 
							dalem21 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A )  | 
						
						
							| 11 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ ps ) -> K e. HL )  | 
						
						
							| 13 | 
							
								1 2 3 4 5
							 | 
							dalemcjden | 
							 |-  ( ( ph /\ ps ) -> ( c .\/ d ) e. ( LLines ` K ) )  | 
						
						
							| 14 | 
							
								1 2 3 4 6 7
							 | 
							dalempjsen | 
							 |-  ( ph -> ( P .\/ S ) e. ( LLines ` K ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ph /\ ps ) -> ( P .\/ S ) e. ( LLines ` K ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( LLines ` K ) = ( LLines ` K )  | 
						
						
							| 17 | 
							
								3 9 4 16 6
							 | 
							2llnmj | 
							 |-  ( ( K e. HL /\ ( c .\/ d ) e. ( LLines ` K ) /\ ( P .\/ S ) e. ( LLines ` K ) ) -> ( ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A <-> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) )  | 
						
						
							| 18 | 
							
								12 13 15 17
							 | 
							syl3anc | 
							 |-  ( ( ph /\ ps ) -> ( ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A <-> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adant2 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A <-> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							mpbid | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O )  |