Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem22.o |
|- O = ( LPlanes ` K ) |
7 |
|
dalem22.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
8 |
|
dalem22.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
9 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
10 |
1 2 3 4 5 9 6 7 8
|
dalem21 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A ) |
11 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
12 |
11
|
adantr |
|- ( ( ph /\ ps ) -> K e. HL ) |
13 |
1 2 3 4 5
|
dalemcjden |
|- ( ( ph /\ ps ) -> ( c .\/ d ) e. ( LLines ` K ) ) |
14 |
1 2 3 4 6 7
|
dalempjsen |
|- ( ph -> ( P .\/ S ) e. ( LLines ` K ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ ps ) -> ( P .\/ S ) e. ( LLines ` K ) ) |
16 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
17 |
3 9 4 16 6
|
2llnmj |
|- ( ( K e. HL /\ ( c .\/ d ) e. ( LLines ` K ) /\ ( P .\/ S ) e. ( LLines ` K ) ) -> ( ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A <-> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) ) |
18 |
12 13 15 17
|
syl3anc |
|- ( ( ph /\ ps ) -> ( ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A <-> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) ) |
19 |
18
|
3adant2 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( c .\/ d ) ( meet ` K ) ( P .\/ S ) ) e. A <-> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) ) |
20 |
10 19
|
mpbid |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ d ) .\/ ( P .\/ S ) ) e. O ) |