Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem23.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem23.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem23.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem23.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem23.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
11 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
12 |
11
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. Lat ) |
13 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
14 |
13
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
15 |
5
|
dalemccea |
|- ( ps -> c e. A ) |
16 |
15
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. A ) |
17 |
1
|
dalempea |
|- ( ph -> P e. A ) |
18 |
17
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> P e. A ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
19 3 4
|
hlatjcl |
|- ( ( K e. HL /\ c e. A /\ P e. A ) -> ( c .\/ P ) e. ( Base ` K ) ) |
21 |
14 16 18 20
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ P ) e. ( Base ` K ) ) |
22 |
5
|
dalemddea |
|- ( ps -> d e. A ) |
23 |
22
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> d e. A ) |
24 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
25 |
24
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> S e. A ) |
26 |
19 3 4
|
hlatjcl |
|- ( ( K e. HL /\ d e. A /\ S e. A ) -> ( d .\/ S ) e. ( Base ` K ) ) |
27 |
14 23 25 26
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ S ) e. ( Base ` K ) ) |
28 |
19 2 6
|
latmle1 |
|- ( ( K e. Lat /\ ( c .\/ P ) e. ( Base ` K ) /\ ( d .\/ S ) e. ( Base ` K ) ) -> ( ( c .\/ P ) ./\ ( d .\/ S ) ) .<_ ( c .\/ P ) ) |
29 |
12 21 27 28
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) ./\ ( d .\/ S ) ) .<_ ( c .\/ P ) ) |
30 |
10 29
|
eqbrtrid |
|- ( ( ph /\ Y = Z /\ ps ) -> G .<_ ( c .\/ P ) ) |
31 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
32 |
1 2 3 4 7 8
|
dalemply |
|- ( ph -> P .<_ Y ) |
33 |
32
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> P .<_ Y ) |
34 |
1 2 3 4 5 6 7 8 9 10
|
dalem24 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. G .<_ Y ) |
35 |
|
nbrne2 |
|- ( ( P .<_ Y /\ -. G .<_ Y ) -> P =/= G ) |
36 |
35
|
necomd |
|- ( ( P .<_ Y /\ -. G .<_ Y ) -> G =/= P ) |
37 |
33 34 36
|
syl2anc |
|- ( ( ph /\ Y = Z /\ ps ) -> G =/= P ) |
38 |
2 3 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( G e. A /\ c e. A /\ P e. A ) /\ G =/= P ) -> ( G .<_ ( c .\/ P ) -> c .<_ ( G .\/ P ) ) ) |
39 |
14 31 16 18 37 38
|
syl131anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .<_ ( c .\/ P ) -> c .<_ ( G .\/ P ) ) ) |
40 |
30 39
|
mpd |
|- ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( G .\/ P ) ) |