| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalem.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem.ps | 
							 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem23.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem23.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem23.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 9 | 
							
								
							 | 
							dalem23.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 10 | 
							
								
							 | 
							dalem23.g | 
							 |-  G = ( ( c .\/ P ) ./\ ( d .\/ S ) )  | 
						
						
							| 11 | 
							
								1
							 | 
							dalemkelat | 
							 |-  ( ph -> K e. Lat )  | 
						
						
							| 12 | 
							
								11
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. Lat )  | 
						
						
							| 13 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. HL )  | 
						
						
							| 15 | 
							
								5
							 | 
							dalemccea | 
							 |-  ( ps -> c e. A )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant3 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> c e. A )  | 
						
						
							| 17 | 
							
								1
							 | 
							dalempea | 
							 |-  ( ph -> P e. A )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> P e. A )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 20 | 
							
								19 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ c e. A /\ P e. A ) -> ( c .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								14 16 18 20
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								5
							 | 
							dalemddea | 
							 |-  ( ps -> d e. A )  | 
						
						
							| 23 | 
							
								22
							 | 
							3ad2ant3 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> d e. A )  | 
						
						
							| 24 | 
							
								1
							 | 
							dalemsea | 
							 |-  ( ph -> S e. A )  | 
						
						
							| 25 | 
							
								24
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> S e. A )  | 
						
						
							| 26 | 
							
								19 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ d e. A /\ S e. A ) -> ( d .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								14 23 25 26
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								19 2 6
							 | 
							latmle1 | 
							 |-  ( ( K e. Lat /\ ( c .\/ P ) e. ( Base ` K ) /\ ( d .\/ S ) e. ( Base ` K ) ) -> ( ( c .\/ P ) ./\ ( d .\/ S ) ) .<_ ( c .\/ P ) )  | 
						
						
							| 29 | 
							
								12 21 27 28
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) ./\ ( d .\/ S ) ) .<_ ( c .\/ P ) )  | 
						
						
							| 30 | 
							
								10 29
							 | 
							eqbrtrid | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G .<_ ( c .\/ P ) )  | 
						
						
							| 31 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							dalem23 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G e. A )  | 
						
						
							| 32 | 
							
								1 2 3 4 7 8
							 | 
							dalemply | 
							 |-  ( ph -> P .<_ Y )  | 
						
						
							| 33 | 
							
								32
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> P .<_ Y )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							dalem24 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> -. G .<_ Y )  | 
						
						
							| 35 | 
							
								
							 | 
							nbrne2 | 
							 |-  ( ( P .<_ Y /\ -. G .<_ Y ) -> P =/= G )  | 
						
						
							| 36 | 
							
								35
							 | 
							necomd | 
							 |-  ( ( P .<_ Y /\ -. G .<_ Y ) -> G =/= P )  | 
						
						
							| 37 | 
							
								33 34 36
							 | 
							syl2anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G =/= P )  | 
						
						
							| 38 | 
							
								2 3 4
							 | 
							hlatexch2 | 
							 |-  ( ( K e. HL /\ ( G e. A /\ c e. A /\ P e. A ) /\ G =/= P ) -> ( G .<_ ( c .\/ P ) -> c .<_ ( G .\/ P ) ) )  | 
						
						
							| 39 | 
							
								14 31 16 18 37 38
							 | 
							syl131anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( G .<_ ( c .\/ P ) -> c .<_ ( G .\/ P ) ) )  | 
						
						
							| 40 | 
							
								30 39
							 | 
							mpd | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( G .\/ P ) )  |