Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem23.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem23.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem23.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem23.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem23.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
dalem27 |
|- ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( G .\/ P ) ) |
12 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
13 |
12
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
14 |
5
|
dalemccea |
|- ( ps -> c e. A ) |
15 |
14
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. A ) |
16 |
1
|
dalempea |
|- ( ph -> P e. A ) |
17 |
16
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> P e. A ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
19 |
1 2 3 4 5 6 7 8 9 10
|
dalem25 |
|- ( ( ph /\ Y = Z /\ ps ) -> c =/= G ) |
20 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( c e. A /\ P e. A /\ G e. A ) /\ c =/= G ) -> ( c .<_ ( G .\/ P ) -> P .<_ ( G .\/ c ) ) ) |
21 |
13 15 17 18 19 20
|
syl131anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .<_ ( G .\/ P ) -> P .<_ ( G .\/ c ) ) ) |
22 |
11 21
|
mpd |
|- ( ( ph /\ Y = Z /\ ps ) -> P .<_ ( G .\/ c ) ) |