Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem3.m |
|- ./\ = ( meet ` K ) |
6 |
|
dalem3.o |
|- O = ( LPlanes ` K ) |
7 |
|
dalem3.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
8 |
|
dalem3.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
9 |
|
dalem3.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
10 |
|
dalem3.e |
|- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
11 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
12 |
1
|
dalempea |
|- ( ph -> P e. A ) |
13 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
14 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
15 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
16 |
2 3 4 6 7
|
lplnric |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ Y e. O ) -> -. R .<_ ( P .\/ Q ) ) |
17 |
11 12 13 14 15 16
|
syl131anc |
|- ( ph -> -. R .<_ ( P .\/ Q ) ) |
18 |
17
|
adantr |
|- ( ( ph /\ D =/= Q ) -> -. R .<_ ( P .\/ Q ) ) |
19 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
21 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
22 |
11 13 14 21
|
syl3anc |
|- ( ph -> ( Q .\/ R ) e. ( Base ` K ) ) |
23 |
1 3 4
|
dalemtjueb |
|- ( ph -> ( T .\/ U ) e. ( Base ` K ) ) |
24 |
20 2 5
|
latmle1 |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .<_ ( Q .\/ R ) ) |
25 |
19 22 23 24
|
syl3anc |
|- ( ph -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) .<_ ( Q .\/ R ) ) |
26 |
10 25
|
eqbrtrid |
|- ( ph -> E .<_ ( Q .\/ R ) ) |
27 |
|
breq1 |
|- ( D = E -> ( D .<_ ( Q .\/ R ) <-> E .<_ ( Q .\/ R ) ) ) |
28 |
26 27
|
syl5ibrcom |
|- ( ph -> ( D = E -> D .<_ ( Q .\/ R ) ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ D =/= Q ) -> ( D = E -> D .<_ ( Q .\/ R ) ) ) |
30 |
11
|
adantr |
|- ( ( ph /\ D =/= Q ) -> K e. HL ) |
31 |
1 2 3 4 5 6 7 8 9
|
dalemdea |
|- ( ph -> D e. A ) |
32 |
31
|
adantr |
|- ( ( ph /\ D =/= Q ) -> D e. A ) |
33 |
14
|
adantr |
|- ( ( ph /\ D =/= Q ) -> R e. A ) |
34 |
13
|
adantr |
|- ( ( ph /\ D =/= Q ) -> Q e. A ) |
35 |
|
simpr |
|- ( ( ph /\ D =/= Q ) -> D =/= Q ) |
36 |
2 3 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( D e. A /\ R e. A /\ Q e. A ) /\ D =/= Q ) -> ( D .<_ ( Q .\/ R ) -> R .<_ ( Q .\/ D ) ) ) |
37 |
30 32 33 34 35 36
|
syl131anc |
|- ( ( ph /\ D =/= Q ) -> ( D .<_ ( Q .\/ R ) -> R .<_ ( Q .\/ D ) ) ) |
38 |
2 3 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
39 |
11 12 13 38
|
syl3anc |
|- ( ph -> Q .<_ ( P .\/ Q ) ) |
40 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
41 |
1 3 4
|
dalemsjteb |
|- ( ph -> ( S .\/ T ) e. ( Base ` K ) ) |
42 |
20 2 5
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
43 |
19 40 41 42
|
syl3anc |
|- ( ph -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) .<_ ( P .\/ Q ) ) |
44 |
9 43
|
eqbrtrid |
|- ( ph -> D .<_ ( P .\/ Q ) ) |
45 |
1 4
|
dalemqeb |
|- ( ph -> Q e. ( Base ` K ) ) |
46 |
20 4
|
atbase |
|- ( D e. A -> D e. ( Base ` K ) ) |
47 |
31 46
|
syl |
|- ( ph -> D e. ( Base ` K ) ) |
48 |
20 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ D e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( P .\/ Q ) /\ D .<_ ( P .\/ Q ) ) <-> ( Q .\/ D ) .<_ ( P .\/ Q ) ) ) |
49 |
19 45 47 40 48
|
syl13anc |
|- ( ph -> ( ( Q .<_ ( P .\/ Q ) /\ D .<_ ( P .\/ Q ) ) <-> ( Q .\/ D ) .<_ ( P .\/ Q ) ) ) |
50 |
39 44 49
|
mpbi2and |
|- ( ph -> ( Q .\/ D ) .<_ ( P .\/ Q ) ) |
51 |
1 4
|
dalemreb |
|- ( ph -> R e. ( Base ` K ) ) |
52 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ D e. A ) -> ( Q .\/ D ) e. ( Base ` K ) ) |
53 |
11 13 31 52
|
syl3anc |
|- ( ph -> ( Q .\/ D ) e. ( Base ` K ) ) |
54 |
20 2
|
lattr |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ ( Q .\/ D ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( Q .\/ D ) /\ ( Q .\/ D ) .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) ) ) |
55 |
19 51 53 40 54
|
syl13anc |
|- ( ph -> ( ( R .<_ ( Q .\/ D ) /\ ( Q .\/ D ) .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) ) ) |
56 |
50 55
|
mpan2d |
|- ( ph -> ( R .<_ ( Q .\/ D ) -> R .<_ ( P .\/ Q ) ) ) |
57 |
56
|
adantr |
|- ( ( ph /\ D =/= Q ) -> ( R .<_ ( Q .\/ D ) -> R .<_ ( P .\/ Q ) ) ) |
58 |
29 37 57
|
3syld |
|- ( ( ph /\ D =/= Q ) -> ( D = E -> R .<_ ( P .\/ Q ) ) ) |
59 |
58
|
necon3bd |
|- ( ( ph /\ D =/= Q ) -> ( -. R .<_ ( P .\/ Q ) -> D =/= E ) ) |
60 |
18 59
|
mpd |
|- ( ( ph /\ D =/= Q ) -> D =/= E ) |