Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem38.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem38.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem38.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem38.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem38.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
11 |
|
dalem38.h |
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) ) |
12 |
|
dalem38.i |
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) ) |
13 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
14 |
13
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
15 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
16 |
15
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y e. O ) |
17 |
5
|
dalemccea |
|- ( ps -> c e. A ) |
18 |
17
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. A ) |
19 |
5
|
dalem-ccly |
|- ( ps -> -. c .<_ Y ) |
20 |
19
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ Y ) |
21 |
|
eqid |
|- ( LVols ` K ) = ( LVols ` K ) |
22 |
2 3 4 7 21
|
lvoli3 |
|- ( ( ( K e. HL /\ Y e. O /\ c e. A ) /\ -. c .<_ Y ) -> ( Y .\/ c ) e. ( LVols ` K ) ) |
23 |
14 16 18 20 22
|
syl31anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( Y .\/ c ) e. ( LVols ` K ) ) |
24 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. A ) |
25 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
26 |
2 3 4 21
|
lvolnle3at |
|- ( ( ( K e. HL /\ ( Y .\/ c ) e. ( LVols ` K ) ) /\ ( I e. A /\ G e. A /\ c e. A ) ) -> -. ( Y .\/ c ) .<_ ( ( I .\/ G ) .\/ c ) ) |
27 |
14 23 24 25 18 26
|
syl23anc |
|- ( ( ph /\ Y = Z /\ ps ) -> -. ( Y .\/ c ) .<_ ( ( I .\/ G ) .\/ c ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem38 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) |
29 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
30 |
29
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. Lat ) |
31 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. A ) |
32 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
33 |
32 3 4
|
hlatjcl |
|- ( ( K e. HL /\ G e. A /\ H e. A ) -> ( G .\/ H ) e. ( Base ` K ) ) |
34 |
14 25 31 33
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( Base ` K ) ) |
35 |
32 4
|
atbase |
|- ( I e. A -> I e. ( Base ` K ) ) |
36 |
24 35
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. ( Base ` K ) ) |
37 |
32 3
|
latjcl |
|- ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ I e. ( Base ` K ) ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
38 |
30 34 36 37
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) ) |
39 |
5 4
|
dalemcceb |
|- ( ps -> c e. ( Base ` K ) ) |
40 |
39
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. ( Base ` K ) ) |
41 |
32 2 3
|
latlej2 |
|- ( ( K e. Lat /\ ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) /\ c e. ( Base ` K ) ) -> c .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) |
42 |
30 38 40 41
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) |
43 |
1 7
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
44 |
43
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y e. ( Base ` K ) ) |
45 |
32 3
|
latjcl |
|- ( ( K e. Lat /\ ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) /\ c e. ( Base ` K ) ) -> ( ( ( G .\/ H ) .\/ I ) .\/ c ) e. ( Base ` K ) ) |
46 |
30 38 40 45
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( G .\/ H ) .\/ I ) .\/ c ) e. ( Base ` K ) ) |
47 |
32 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( Y e. ( Base ` K ) /\ c e. ( Base ` K ) /\ ( ( ( G .\/ H ) .\/ I ) .\/ c ) e. ( Base ` K ) ) ) -> ( ( Y .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) /\ c .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) <-> ( Y .\/ c ) .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) ) |
48 |
30 44 40 46 47
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( Y .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) /\ c .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) <-> ( Y .\/ c ) .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) ) |
49 |
28 42 48
|
mpbi2and |
|- ( ( ph /\ Y = Z /\ ps ) -> ( Y .\/ c ) .<_ ( ( ( G .\/ H ) .\/ I ) .\/ c ) ) |
50 |
3 4
|
hlatjrot |
|- ( ( K e. HL /\ ( G e. A /\ H e. A /\ I e. A ) ) -> ( ( G .\/ H ) .\/ I ) = ( ( I .\/ G ) .\/ H ) ) |
51 |
14 25 31 24 50
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) = ( ( I .\/ G ) .\/ H ) ) |
52 |
51
|
oveq1d |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( ( G .\/ H ) .\/ I ) .\/ c ) = ( ( ( I .\/ G ) .\/ H ) .\/ c ) ) |
53 |
49 52
|
breqtrd |
|- ( ( ph /\ Y = Z /\ ps ) -> ( Y .\/ c ) .<_ ( ( ( I .\/ G ) .\/ H ) .\/ c ) ) |
54 |
53
|
adantr |
|- ( ( ( ph /\ Y = Z /\ ps ) /\ H .<_ ( I .\/ G ) ) -> ( Y .\/ c ) .<_ ( ( ( I .\/ G ) .\/ H ) .\/ c ) ) |
55 |
32 4
|
atbase |
|- ( H e. A -> H e. ( Base ` K ) ) |
56 |
31 55
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. ( Base ` K ) ) |
57 |
32 3 4
|
hlatjcl |
|- ( ( K e. HL /\ I e. A /\ G e. A ) -> ( I .\/ G ) e. ( Base ` K ) ) |
58 |
14 24 25 57
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( I .\/ G ) e. ( Base ` K ) ) |
59 |
32 2 3
|
latleeqj2 |
|- ( ( K e. Lat /\ H e. ( Base ` K ) /\ ( I .\/ G ) e. ( Base ` K ) ) -> ( H .<_ ( I .\/ G ) <-> ( ( I .\/ G ) .\/ H ) = ( I .\/ G ) ) ) |
60 |
30 56 58 59
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( H .<_ ( I .\/ G ) <-> ( ( I .\/ G ) .\/ H ) = ( I .\/ G ) ) ) |
61 |
60
|
biimpa |
|- ( ( ( ph /\ Y = Z /\ ps ) /\ H .<_ ( I .\/ G ) ) -> ( ( I .\/ G ) .\/ H ) = ( I .\/ G ) ) |
62 |
61
|
oveq1d |
|- ( ( ( ph /\ Y = Z /\ ps ) /\ H .<_ ( I .\/ G ) ) -> ( ( ( I .\/ G ) .\/ H ) .\/ c ) = ( ( I .\/ G ) .\/ c ) ) |
63 |
54 62
|
breqtrd |
|- ( ( ( ph /\ Y = Z /\ ps ) /\ H .<_ ( I .\/ G ) ) -> ( Y .\/ c ) .<_ ( ( I .\/ G ) .\/ c ) ) |
64 |
27 63
|
mtand |
|- ( ( ph /\ Y = Z /\ ps ) -> -. H .<_ ( I .\/ G ) ) |