Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem3.m |
|- ./\ = ( meet ` K ) |
6 |
|
dalem3.o |
|- O = ( LPlanes ` K ) |
7 |
|
dalem3.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
8 |
|
dalem3.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
9 |
|
dalem3.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
10 |
|
dalem3.e |
|- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
11 |
1 2 3 4
|
dalemswapyz |
|- ( ph -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ D =/= T ) -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) ) |
13 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
14 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
15 |
1 3 4
|
dalemsjteb |
|- ( ph -> ( S .\/ T ) e. ( Base ` K ) ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
16 5
|
latmcom |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( S .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) = ( ( S .\/ T ) ./\ ( P .\/ Q ) ) ) |
18 |
13 14 15 17
|
syl3anc |
|- ( ph -> ( ( P .\/ Q ) ./\ ( S .\/ T ) ) = ( ( S .\/ T ) ./\ ( P .\/ Q ) ) ) |
19 |
9 18
|
eqtrid |
|- ( ph -> D = ( ( S .\/ T ) ./\ ( P .\/ Q ) ) ) |
20 |
19
|
neeq1d |
|- ( ph -> ( D =/= T <-> ( ( S .\/ T ) ./\ ( P .\/ Q ) ) =/= T ) ) |
21 |
20
|
biimpa |
|- ( ( ph /\ D =/= T ) -> ( ( S .\/ T ) ./\ ( P .\/ Q ) ) =/= T ) |
22 |
|
biid |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) ) |
23 |
|
eqid |
|- ( ( S .\/ T ) ./\ ( P .\/ Q ) ) = ( ( S .\/ T ) ./\ ( P .\/ Q ) ) |
24 |
|
eqid |
|- ( ( T .\/ U ) ./\ ( Q .\/ R ) ) = ( ( T .\/ U ) ./\ ( Q .\/ R ) ) |
25 |
22 2 3 4 5 6 8 7 23 24
|
dalem3 |
|- ( ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) /\ ( ( S .\/ T ) ./\ ( P .\/ Q ) ) =/= T ) -> ( ( S .\/ T ) ./\ ( P .\/ Q ) ) =/= ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
26 |
12 21 25
|
syl2anc |
|- ( ( ph /\ D =/= T ) -> ( ( S .\/ T ) ./\ ( P .\/ Q ) ) =/= ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
27 |
19
|
adantr |
|- ( ( ph /\ D =/= T ) -> D = ( ( S .\/ T ) ./\ ( P .\/ Q ) ) ) |
28 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
29 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
30 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
31 |
16 3 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
32 |
28 29 30 31
|
syl3anc |
|- ( ph -> ( Q .\/ R ) e. ( Base ` K ) ) |
33 |
1 3 4
|
dalemtjueb |
|- ( ph -> ( T .\/ U ) e. ( Base ` K ) ) |
34 |
16 5
|
latmcom |
|- ( ( K e. Lat /\ ( Q .\/ R ) e. ( Base ` K ) /\ ( T .\/ U ) e. ( Base ` K ) ) -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) = ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
35 |
13 32 33 34
|
syl3anc |
|- ( ph -> ( ( Q .\/ R ) ./\ ( T .\/ U ) ) = ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
36 |
10 35
|
eqtrid |
|- ( ph -> E = ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ D =/= T ) -> E = ( ( T .\/ U ) ./\ ( Q .\/ R ) ) ) |
38 |
26 27 37
|
3netr4d |
|- ( ( ph /\ D =/= T ) -> D =/= E ) |