Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem44.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem44.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem44.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem44.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem44.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
11 |
|
dalem44.h |
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) ) |
12 |
|
dalem44.i |
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) ) |
13 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
14 |
13
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
15 |
5 4
|
dalemcceb |
|- ( ps -> c e. ( Base ` K ) ) |
16 |
15
|
3ad2ant3 |
|- ( ( ph /\ Y = Z /\ ps ) -> c e. ( Base ` K ) ) |
17 |
14 16
|
jca |
|- ( ( ph /\ Y = Z /\ ps ) -> ( K e. HL /\ c e. ( Base ` K ) ) ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
dalem23 |
|- ( ( ph /\ Y = Z /\ ps ) -> G e. A ) |
19 |
1 2 3 4 5 6 7 8 9 11
|
dalem29 |
|- ( ( ph /\ Y = Z /\ ps ) -> H e. A ) |
20 |
1 2 3 4 5 6 7 8 9 12
|
dalem34 |
|- ( ( ph /\ Y = Z /\ ps ) -> I e. A ) |
21 |
18 19 20
|
3jca |
|- ( ( ph /\ Y = Z /\ ps ) -> ( G e. A /\ H e. A /\ I e. A ) ) |
22 |
1
|
dalempea |
|- ( ph -> P e. A ) |
23 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
24 |
1
|
dalemrea |
|- ( ph -> R e. A ) |
25 |
22 23 24
|
3jca |
|- ( ph -> ( P e. A /\ Q e. A /\ R e. A ) ) |
26 |
25
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( P e. A /\ Q e. A /\ R e. A ) ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem42 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. O ) |
28 |
1
|
dalemyeo |
|- ( ph -> Y e. O ) |
29 |
28
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> Y e. O ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem45 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( G .\/ H ) ) |
31 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem46 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( H .\/ I ) ) |
32 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem47 |
|- ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( I .\/ G ) ) |
33 |
30 31 32
|
3jca |
|- ( ( ph /\ Y = Z /\ ps ) -> ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem48 |
|- ( ( ph /\ ps ) -> -. c .<_ ( P .\/ Q ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem49 |
|- ( ( ph /\ ps ) -> -. c .<_ ( Q .\/ R ) ) |
36 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dalem50 |
|- ( ( ph /\ ps ) -> -. c .<_ ( R .\/ P ) ) |
37 |
34 35 36
|
3jca |
|- ( ( ph /\ ps ) -> ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) ) |
38 |
37
|
3adant2 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) ) |
39 |
1 2 3 4 5 6 7 8 9 10
|
dalem27 |
|- ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( G .\/ P ) ) |
40 |
1 2 3 4 5 6 7 8 9 11
|
dalem32 |
|- ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( H .\/ Q ) ) |
41 |
1 2 3 4 5 6 7 8 9 12
|
dalem36 |
|- ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( I .\/ R ) ) |
42 |
39 40 41
|
3jca |
|- ( ( ph /\ Y = Z /\ ps ) -> ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) |
43 |
|
biid |
|- ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) <-> ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) ) |
44 |
|
eqid |
|- ( ( G .\/ H ) .\/ I ) = ( ( G .\/ H ) .\/ I ) |
45 |
|
eqid |
|- ( ( G .\/ H ) ./\ ( P .\/ Q ) ) = ( ( G .\/ H ) ./\ ( P .\/ Q ) ) |
46 |
43 2 3 4 6 7 44 8 45
|
dalemdea |
|- ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A ) |
47 |
17 21 26 27 29 33 38 42 46
|
syl323anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A ) |