Metamath Proof Explorer


Theorem dalem52

Description: Lemma for dath . Lines G H and P Q intersect at an atom. (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
dalem.l
|- .<_ = ( le ` K )
dalem.j
|- .\/ = ( join ` K )
dalem.a
|- A = ( Atoms ` K )
dalem.ps
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )
dalem44.m
|- ./\ = ( meet ` K )
dalem44.o
|- O = ( LPlanes ` K )
dalem44.y
|- Y = ( ( P .\/ Q ) .\/ R )
dalem44.z
|- Z = ( ( S .\/ T ) .\/ U )
dalem44.g
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) )
dalem44.h
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) )
dalem44.i
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) )
Assertion dalem52
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A )

Proof

Step Hyp Ref Expression
1 dalem.ph
 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
2 dalem.l
 |-  .<_ = ( le ` K )
3 dalem.j
 |-  .\/ = ( join ` K )
4 dalem.a
 |-  A = ( Atoms ` K )
5 dalem.ps
 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )
6 dalem44.m
 |-  ./\ = ( meet ` K )
7 dalem44.o
 |-  O = ( LPlanes ` K )
8 dalem44.y
 |-  Y = ( ( P .\/ Q ) .\/ R )
9 dalem44.z
 |-  Z = ( ( S .\/ T ) .\/ U )
10 dalem44.g
 |-  G = ( ( c .\/ P ) ./\ ( d .\/ S ) )
11 dalem44.h
 |-  H = ( ( c .\/ Q ) ./\ ( d .\/ T ) )
12 dalem44.i
 |-  I = ( ( c .\/ R ) ./\ ( d .\/ U ) )
13 1 dalemkehl
 |-  ( ph -> K e. HL )
14 13 3ad2ant1
 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. HL )
15 5 4 dalemcceb
 |-  ( ps -> c e. ( Base ` K ) )
16 15 3ad2ant3
 |-  ( ( ph /\ Y = Z /\ ps ) -> c e. ( Base ` K ) )
17 14 16 jca
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( K e. HL /\ c e. ( Base ` K ) ) )
18 1 2 3 4 5 6 7 8 9 10 dalem23
 |-  ( ( ph /\ Y = Z /\ ps ) -> G e. A )
19 1 2 3 4 5 6 7 8 9 11 dalem29
 |-  ( ( ph /\ Y = Z /\ ps ) -> H e. A )
20 1 2 3 4 5 6 7 8 9 12 dalem34
 |-  ( ( ph /\ Y = Z /\ ps ) -> I e. A )
21 18 19 20 3jca
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( G e. A /\ H e. A /\ I e. A ) )
22 1 dalempea
 |-  ( ph -> P e. A )
23 1 dalemqea
 |-  ( ph -> Q e. A )
24 1 dalemrea
 |-  ( ph -> R e. A )
25 22 23 24 3jca
 |-  ( ph -> ( P e. A /\ Q e. A /\ R e. A ) )
26 25 3ad2ant1
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( P e. A /\ Q e. A /\ R e. A ) )
27 1 2 3 4 5 6 7 8 9 10 11 12 dalem42
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. O )
28 1 dalemyeo
 |-  ( ph -> Y e. O )
29 28 3ad2ant1
 |-  ( ( ph /\ Y = Z /\ ps ) -> Y e. O )
30 1 2 3 4 5 6 7 8 9 10 11 12 dalem45
 |-  ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( G .\/ H ) )
31 1 2 3 4 5 6 7 8 9 10 11 12 dalem46
 |-  ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( H .\/ I ) )
32 1 2 3 4 5 6 7 8 9 10 11 12 dalem47
 |-  ( ( ph /\ Y = Z /\ ps ) -> -. c .<_ ( I .\/ G ) )
33 30 31 32 3jca
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) )
34 1 2 3 4 5 6 7 8 9 10 11 12 dalem48
 |-  ( ( ph /\ ps ) -> -. c .<_ ( P .\/ Q ) )
35 1 2 3 4 5 6 7 8 9 10 11 12 dalem49
 |-  ( ( ph /\ ps ) -> -. c .<_ ( Q .\/ R ) )
36 1 2 3 4 5 6 7 8 9 10 11 12 dalem50
 |-  ( ( ph /\ ps ) -> -. c .<_ ( R .\/ P ) )
37 34 35 36 3jca
 |-  ( ( ph /\ ps ) -> ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) )
38 37 3adant2
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) )
39 1 2 3 4 5 6 7 8 9 10 dalem27
 |-  ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( G .\/ P ) )
40 1 2 3 4 5 6 7 8 9 11 dalem32
 |-  ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( H .\/ Q ) )
41 1 2 3 4 5 6 7 8 9 12 dalem36
 |-  ( ( ph /\ Y = Z /\ ps ) -> c .<_ ( I .\/ R ) )
42 39 40 41 3jca
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) )
43 biid
 |-  ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) <-> ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) )
44 eqid
 |-  ( ( G .\/ H ) .\/ I ) = ( ( G .\/ H ) .\/ I )
45 eqid
 |-  ( ( G .\/ H ) ./\ ( P .\/ Q ) ) = ( ( G .\/ H ) ./\ ( P .\/ Q ) )
46 43 2 3 4 6 7 44 8 45 dalemdea
 |-  ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A )
47 17 21 26 27 29 33 38 42 46 syl323anc
 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A )