| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalem.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem.ps | 
							 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem54.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem54.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem54.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 9 | 
							
								
							 | 
							dalem54.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 10 | 
							
								
							 | 
							dalem54.g | 
							 |-  G = ( ( c .\/ P ) ./\ ( d .\/ S ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dalem54.h | 
							 |-  H = ( ( c .\/ Q ) ./\ ( d .\/ T ) )  | 
						
						
							| 12 | 
							
								
							 | 
							dalem54.i | 
							 |-  I = ( ( c .\/ R ) ./\ ( d .\/ U ) )  | 
						
						
							| 13 | 
							
								
							 | 
							dalem54.b1 | 
							 |-  B = ( ( ( G .\/ H ) .\/ I ) ./\ Y )  | 
						
						
							| 14 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. HL )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							dalem23 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G e. A )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 8 9 11
							 | 
							dalem29 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> H e. A )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							dalem41 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G =/= H )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( LLines ` K ) = ( LLines ` K )  | 
						
						
							| 20 | 
							
								3 4 19
							 | 
							llni2 | 
							 |-  ( ( ( K e. HL /\ G e. A /\ H e. A ) /\ G =/= H ) -> ( G .\/ H ) e. ( LLines ` K ) )  | 
						
						
							| 21 | 
							
								15 16 17 18 20
							 | 
							syl31anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( LLines ` K ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 19 7 8 9 10 11 12 13
							 | 
							dalem53 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> B e. ( LLines ` K ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							dalemkelat | 
							 |-  ( ph -> K e. Lat )  | 
						
						
							| 24 | 
							
								23
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. Lat )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 26 | 
							
								25 19
							 | 
							llnbase | 
							 |-  ( ( G .\/ H ) e. ( LLines ` K ) -> ( G .\/ H ) e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								21 26
							 | 
							syl | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								1 2 3 4 5 6 7 8 9 12
							 | 
							dalem34 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> I e. A )  | 
						
						
							| 29 | 
							
								25 4
							 | 
							atbase | 
							 |-  ( I e. A -> I e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> I e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								25 3
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ I e. ( Base ` K ) ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								24 27 30 31
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								1 7
							 | 
							dalemyeb | 
							 |-  ( ph -> Y e. ( Base ` K ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> Y e. ( Base ` K ) )  | 
						
						
							| 35 | 
							
								25 2 6
							 | 
							latmle2 | 
							 |-  ( ( K e. Lat /\ ( ( G .\/ H ) .\/ I ) e. ( Base ` K ) /\ Y e. ( Base ` K ) ) -> ( ( ( G .\/ H ) .\/ I ) ./\ Y ) .<_ Y )  | 
						
						
							| 36 | 
							
								24 32 34 35
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( G .\/ H ) .\/ I ) ./\ Y ) .<_ Y )  | 
						
						
							| 37 | 
							
								13 36
							 | 
							eqbrtrid | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> B .<_ Y )  | 
						
						
							| 38 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							dalem24 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> -. G .<_ Y )  | 
						
						
							| 39 | 
							
								25 4
							 | 
							atbase | 
							 |-  ( G e. A -> G e. ( Base ` K ) )  | 
						
						
							| 40 | 
							
								16 39
							 | 
							syl | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G e. ( Base ` K ) )  | 
						
						
							| 41 | 
							
								25 4
							 | 
							atbase | 
							 |-  ( H e. A -> H e. ( Base ` K ) )  | 
						
						
							| 42 | 
							
								17 41
							 | 
							syl | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> H e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								25 2 3
							 | 
							latjle12 | 
							 |-  ( ( K e. Lat /\ ( G e. ( Base ` K ) /\ H e. ( Base ` K ) /\ Y e. ( Base ` K ) ) ) -> ( ( G .<_ Y /\ H .<_ Y ) <-> ( G .\/ H ) .<_ Y ) )  | 
						
						
							| 44 | 
							
								24 40 42 34 43
							 | 
							syl13anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .<_ Y /\ H .<_ Y ) <-> ( G .\/ H ) .<_ Y ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simpl | 
							 |-  ( ( G .<_ Y /\ H .<_ Y ) -> G .<_ Y )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							biimtrrdi | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .<_ Y -> G .<_ Y ) )  | 
						
						
							| 47 | 
							
								38 46
							 | 
							mtod | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> -. ( G .\/ H ) .<_ Y )  | 
						
						
							| 48 | 
							
								
							 | 
							nbrne2 | 
							 |-  ( ( B .<_ Y /\ -. ( G .\/ H ) .<_ Y ) -> B =/= ( G .\/ H ) )  | 
						
						
							| 49 | 
							
								37 47 48
							 | 
							syl2anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> B =/= ( G .\/ H ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							necomd | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) =/= B )  | 
						
						
							| 51 | 
							
								
							 | 
							hlatl | 
							 |-  ( K e. HL -> K e. AtLat )  | 
						
						
							| 52 | 
							
								15 51
							 | 
							syl | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. AtLat )  | 
						
						
							| 53 | 
							
								25 19
							 | 
							llnbase | 
							 |-  ( B e. ( LLines ` K ) -> B e. ( Base ` K ) )  | 
						
						
							| 54 | 
							
								22 53
							 | 
							syl | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> B e. ( Base ` K ) )  | 
						
						
							| 55 | 
							
								25 6
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ B e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ B ) e. ( Base ` K ) )  | 
						
						
							| 56 | 
							
								24 27 54 55
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) e. ( Base ` K ) )  | 
						
						
							| 57 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							dalem52 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A )  | 
						
						
							| 58 | 
							
								1 3 4
							 | 
							dalempjqeb | 
							 |-  ( ph -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 60 | 
							
								25 2 6
							 | 
							latmle1 | 
							 |-  ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) )  | 
						
						
							| 61 | 
							
								24 27 59 60
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) )  | 
						
						
							| 62 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							dalem51 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) /\ ( ( G .\/ H ) .\/ I ) =/= Y ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							simpld | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) )  | 
						
						
							| 64 | 
							
								25 4
							 | 
							atbase | 
							 |-  ( c e. A -> c e. ( Base ` K ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							anim2i | 
							 |-  ( ( K e. HL /\ c e. A ) -> ( K e. HL /\ c e. ( Base ` K ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							3anim1i | 
							 |-  ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) <-> ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							eqid | 
							 |-  ( ( G .\/ H ) .\/ I ) = ( ( G .\/ H ) .\/ I )  | 
						
						
							| 69 | 
							
								
							 | 
							eqid | 
							 |-  ( ( G .\/ H ) ./\ ( P .\/ Q ) ) = ( ( G .\/ H ) ./\ ( P .\/ Q ) )  | 
						
						
							| 70 | 
							
								67 2 3 4 6 7 68 8 13 69
							 | 
							dalem10 | 
							 |-  ( ( ( ( K e. HL /\ c e. ( Base ` K ) ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B )  | 
						
						
							| 71 | 
							
								66 70
							 | 
							syl3an1 | 
							 |-  ( ( ( ( K e. HL /\ c e. A ) /\ ( G e. A /\ H e. A /\ I e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( ( ( G .\/ H ) .\/ I ) e. O /\ Y e. O ) /\ ( ( -. c .<_ ( G .\/ H ) /\ -. c .<_ ( H .\/ I ) /\ -. c .<_ ( I .\/ G ) ) /\ ( -. c .<_ ( P .\/ Q ) /\ -. c .<_ ( Q .\/ R ) /\ -. c .<_ ( R .\/ P ) ) /\ ( c .<_ ( G .\/ P ) /\ c .<_ ( H .\/ Q ) /\ c .<_ ( I .\/ R ) ) ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B )  | 
						
						
							| 72 | 
							
								63 71
							 | 
							syl | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B )  | 
						
						
							| 73 | 
							
								25 6
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( G .\/ H ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) )  | 
						
						
							| 74 | 
							
								24 27 59 73
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) )  | 
						
						
							| 75 | 
							
								25 2 6
							 | 
							latlem12 | 
							 |-  ( ( K e. Lat /\ ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. ( Base ` K ) /\ ( G .\/ H ) e. ( Base ` K ) /\ B e. ( Base ` K ) ) ) -> ( ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) )  | 
						
						
							| 76 | 
							
								24 74 27 54 75
							 | 
							syl13anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( G .\/ H ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ B ) <-> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) )  | 
						
						
							| 77 | 
							
								61 72 76
							 | 
							mpbi2and | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) )  | 
						
						
							| 78 | 
							
								
							 | 
							eqid | 
							 |-  ( 0. ` K ) = ( 0. ` K )  | 
						
						
							| 79 | 
							
								25 2 78 4
							 | 
							atlen0 | 
							 |-  ( ( ( K e. AtLat /\ ( ( G .\/ H ) ./\ B ) e. ( Base ` K ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) e. A ) /\ ( ( G .\/ H ) ./\ ( P .\/ Q ) ) .<_ ( ( G .\/ H ) ./\ B ) ) -> ( ( G .\/ H ) ./\ B ) =/= ( 0. ` K ) )  | 
						
						
							| 80 | 
							
								52 56 57 77 79
							 | 
							syl31anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) =/= ( 0. ` K ) )  | 
						
						
							| 81 | 
							
								6 78 4 19
							 | 
							2llnmat | 
							 |-  ( ( ( K e. HL /\ ( G .\/ H ) e. ( LLines ` K ) /\ B e. ( LLines ` K ) ) /\ ( ( G .\/ H ) =/= B /\ ( ( G .\/ H ) ./\ B ) =/= ( 0. ` K ) ) ) -> ( ( G .\/ H ) ./\ B ) e. A )  | 
						
						
							| 82 | 
							
								15 21 22 50 80 81
							 | 
							syl32anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) e. A )  |