| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalem.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem.ps | 
							 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem54.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem54.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem54.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 9 | 
							
								
							 | 
							dalem54.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 10 | 
							
								
							 | 
							dalem54.g | 
							 |-  G = ( ( c .\/ P ) ./\ ( d .\/ S ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dalem54.h | 
							 |-  H = ( ( c .\/ Q ) ./\ ( d .\/ T ) )  | 
						
						
							| 12 | 
							
								
							 | 
							dalem54.i | 
							 |-  I = ( ( c .\/ R ) ./\ ( d .\/ U ) )  | 
						
						
							| 13 | 
							
								
							 | 
							dalem54.b1 | 
							 |-  B = ( ( ( G .\/ H ) .\/ I ) ./\ Y )  | 
						
						
							| 14 | 
							
								1 2 3 4
							 | 
							dalemswapyz | 
							 |-  ( ph -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> Y = Z )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqcomd | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> Z = Y )  | 
						
						
							| 18 | 
							
								1 2 3 4 5
							 | 
							dalemswapyzps | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( d e. A /\ c e. A ) /\ -. d .<_ Z /\ ( c =/= d /\ -. c .<_ Z /\ C .<_ ( d .\/ c ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( d e. A /\ c e. A ) /\ -. d .<_ Z /\ ( c =/= d /\ -. c .<_ Z /\ C .<_ ( d .\/ c ) ) ) <-> ( ( d e. A /\ c e. A ) /\ -. d .<_ Z /\ ( c =/= d /\ -. c .<_ Z /\ C .<_ ( d .\/ c ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( ( d .\/ S ) ./\ ( c .\/ P ) ) = ( ( d .\/ S ) ./\ ( c .\/ P ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( ( d .\/ T ) ./\ ( c .\/ Q ) ) = ( ( d .\/ T ) ./\ ( c .\/ Q ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( ( d .\/ U ) ./\ ( c .\/ R ) ) = ( ( d .\/ U ) ./\ ( c .\/ R ) )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  ( ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) ./\ Z ) = ( ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) ./\ Z )  | 
						
						
							| 25 | 
							
								19 2 3 4 20 6 7 9 8 21 22 23 24
							 | 
							dalem55 | 
							 |-  ( ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( S e. A /\ T e. A /\ U e. A ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) /\ ( Z e. O /\ Y e. O ) /\ ( ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( C .<_ ( S .\/ P ) /\ C .<_ ( T .\/ Q ) /\ C .<_ ( U .\/ R ) ) ) ) /\ Z = Y /\ ( ( d e. A /\ c e. A ) /\ -. d .<_ Z /\ ( c =/= d /\ -. c .<_ Z /\ C .<_ ( d .\/ c ) ) ) ) -> ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) ./\ ( S .\/ T ) ) = ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) ./\ ( ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) ./\ Z ) ) )  | 
						
						
							| 26 | 
							
								15 17 18 25
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) ./\ ( S .\/ T ) ) = ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) ./\ ( ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) ./\ Z ) ) )  | 
						
						
							| 27 | 
							
								1
							 | 
							dalemkelat | 
							 |-  ( ph -> K e. Lat )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. Lat )  | 
						
						
							| 29 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. HL )  | 
						
						
							| 31 | 
							
								5
							 | 
							dalemccea | 
							 |-  ( ps -> c e. A )  | 
						
						
							| 32 | 
							
								31
							 | 
							3ad2ant3 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> c e. A )  | 
						
						
							| 33 | 
							
								1
							 | 
							dalempea | 
							 |-  ( ph -> P e. A )  | 
						
						
							| 34 | 
							
								33
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> P e. A )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 36 | 
							
								35 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ c e. A /\ P e. A ) -> ( c .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 37 | 
							
								30 32 34 36
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ P ) e. ( Base ` K ) )  | 
						
						
							| 38 | 
							
								5
							 | 
							dalemddea | 
							 |-  ( ps -> d e. A )  | 
						
						
							| 39 | 
							
								38
							 | 
							3ad2ant3 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> d e. A )  | 
						
						
							| 40 | 
							
								1
							 | 
							dalemsea | 
							 |-  ( ph -> S e. A )  | 
						
						
							| 41 | 
							
								40
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> S e. A )  | 
						
						
							| 42 | 
							
								35 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ d e. A /\ S e. A ) -> ( d .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								30 39 41 42
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 44 | 
							
								35 6
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ ( c .\/ P ) e. ( Base ` K ) /\ ( d .\/ S ) e. ( Base ` K ) ) -> ( ( c .\/ P ) ./\ ( d .\/ S ) ) = ( ( d .\/ S ) ./\ ( c .\/ P ) ) )  | 
						
						
							| 45 | 
							
								28 37 43 44
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ P ) ./\ ( d .\/ S ) ) = ( ( d .\/ S ) ./\ ( c .\/ P ) ) )  | 
						
						
							| 46 | 
							
								10 45
							 | 
							eqtrid | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G = ( ( d .\/ S ) ./\ ( c .\/ P ) ) )  | 
						
						
							| 47 | 
							
								1
							 | 
							dalemqea | 
							 |-  ( ph -> Q e. A )  | 
						
						
							| 48 | 
							
								47
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> Q e. A )  | 
						
						
							| 49 | 
							
								35 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ c e. A /\ Q e. A ) -> ( c .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 50 | 
							
								30 32 48 49
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 51 | 
							
								1
							 | 
							dalemtea | 
							 |-  ( ph -> T e. A )  | 
						
						
							| 52 | 
							
								51
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> T e. A )  | 
						
						
							| 53 | 
							
								35 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ d e. A /\ T e. A ) -> ( d .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 54 | 
							
								30 39 52 53
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 55 | 
							
								35 6
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ ( c .\/ Q ) e. ( Base ` K ) /\ ( d .\/ T ) e. ( Base ` K ) ) -> ( ( c .\/ Q ) ./\ ( d .\/ T ) ) = ( ( d .\/ T ) ./\ ( c .\/ Q ) ) )  | 
						
						
							| 56 | 
							
								28 50 54 55
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ Q ) ./\ ( d .\/ T ) ) = ( ( d .\/ T ) ./\ ( c .\/ Q ) ) )  | 
						
						
							| 57 | 
							
								11 56
							 | 
							eqtrid | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> H = ( ( d .\/ T ) ./\ ( c .\/ Q ) ) )  | 
						
						
							| 58 | 
							
								46 57
							 | 
							oveq12d | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( G .\/ H ) = ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							oveq1d | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( S .\/ T ) ) = ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) ./\ ( S .\/ T ) ) )  | 
						
						
							| 60 | 
							
								1
							 | 
							dalemrea | 
							 |-  ( ph -> R e. A )  | 
						
						
							| 61 | 
							
								60
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> R e. A )  | 
						
						
							| 62 | 
							
								35 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ c e. A /\ R e. A ) -> ( c .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 63 | 
							
								30 32 61 62
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( c .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 64 | 
							
								1
							 | 
							dalemuea | 
							 |-  ( ph -> U e. A )  | 
						
						
							| 65 | 
							
								64
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> U e. A )  | 
						
						
							| 66 | 
							
								35 3 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ d e. A /\ U e. A ) -> ( d .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 67 | 
							
								30 39 65 66
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( d .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 68 | 
							
								35 6
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ ( c .\/ R ) e. ( Base ` K ) /\ ( d .\/ U ) e. ( Base ` K ) ) -> ( ( c .\/ R ) ./\ ( d .\/ U ) ) = ( ( d .\/ U ) ./\ ( c .\/ R ) ) )  | 
						
						
							| 69 | 
							
								28 63 67 68
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( c .\/ R ) ./\ ( d .\/ U ) ) = ( ( d .\/ U ) ./\ ( c .\/ R ) ) )  | 
						
						
							| 70 | 
							
								12 69
							 | 
							eqtrid | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> I = ( ( d .\/ U ) ./\ ( c .\/ R ) ) )  | 
						
						
							| 71 | 
							
								58 70
							 | 
							oveq12d | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) .\/ I ) = ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) )  | 
						
						
							| 72 | 
							
								71 16
							 | 
							oveq12d | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( G .\/ H ) .\/ I ) ./\ Y ) = ( ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) ./\ Z ) )  | 
						
						
							| 73 | 
							
								13 72
							 | 
							eqtrid | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> B = ( ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) ./\ Z ) )  | 
						
						
							| 74 | 
							
								58 73
							 | 
							oveq12d | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ B ) = ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) ./\ ( ( ( ( ( d .\/ S ) ./\ ( c .\/ P ) ) .\/ ( ( d .\/ T ) ./\ ( c .\/ Q ) ) ) .\/ ( ( d .\/ U ) ./\ ( c .\/ R ) ) ) ./\ Z ) ) )  | 
						
						
							| 75 | 
							
								26 59 74
							 | 
							3eqtr4d | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( G .\/ H ) ./\ ( S .\/ T ) ) = ( ( G .\/ H ) ./\ B ) )  |