| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalem.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem.ps | 
							 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem58.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem58.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem58.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 9 | 
							
								
							 | 
							dalem58.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 10 | 
							
								
							 | 
							dalem58.e | 
							 |-  E = ( ( Q .\/ R ) ./\ ( T .\/ U ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dalem58.g | 
							 |-  G = ( ( c .\/ P ) ./\ ( d .\/ S ) )  | 
						
						
							| 12 | 
							
								
							 | 
							dalem58.h | 
							 |-  H = ( ( c .\/ Q ) ./\ ( d .\/ T ) )  | 
						
						
							| 13 | 
							
								
							 | 
							dalem58.i | 
							 |-  I = ( ( c .\/ R ) ./\ ( d .\/ U ) )  | 
						
						
							| 14 | 
							
								
							 | 
							dalem58.b1 | 
							 |-  B = ( ( ( G .\/ H ) .\/ I ) ./\ Y )  | 
						
						
							| 15 | 
							
								1 2 3 4 8 9
							 | 
							dalemrot | 
							 |-  ( ph -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) )  | 
						
						
							| 17 | 
							
								1 2 3 4 8 9
							 | 
							dalemrotyz | 
							 |-  ( ( ph /\ Y = Z ) -> ( ( Q .\/ R ) .\/ P ) = ( ( T .\/ U ) .\/ S ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3adant3 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( Q .\/ R ) .\/ P ) = ( ( T .\/ U ) .\/ S ) )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 8
							 | 
							dalemrotps | 
							 |-  ( ( ph /\ ps ) -> ( ( c e. A /\ d e. A ) /\ -. c .<_ ( ( Q .\/ R ) .\/ P ) /\ ( d =/= c /\ -. d .<_ ( ( Q .\/ R ) .\/ P ) /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							3adant2 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( c e. A /\ d e. A ) /\ -. c .<_ ( ( Q .\/ R ) .\/ P ) /\ ( d =/= c /\ -. d .<_ ( ( Q .\/ R ) .\/ P ) /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( c e. A /\ d e. A ) /\ -. c .<_ ( ( Q .\/ R ) .\/ P ) /\ ( d =/= c /\ -. d .<_ ( ( Q .\/ R ) .\/ P ) /\ C .<_ ( c .\/ d ) ) ) <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ ( ( Q .\/ R ) .\/ P ) /\ ( d =/= c /\ -. d .<_ ( ( Q .\/ R ) .\/ P ) /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ P )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  ( ( T .\/ U ) .\/ S ) = ( ( T .\/ U ) .\/ S )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( ( ( H .\/ I ) .\/ G ) ./\ ( ( Q .\/ R ) .\/ P ) ) = ( ( ( H .\/ I ) .\/ G ) ./\ ( ( Q .\/ R ) .\/ P ) )  | 
						
						
							| 26 | 
							
								21 2 3 4 22 6 7 23 24 10 12 13 11 25
							 | 
							dalem57 | 
							 |-  ( ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( Q e. A /\ R e. A /\ P e. A ) /\ ( T e. A /\ U e. A /\ S e. A ) ) /\ ( ( ( Q .\/ R ) .\/ P ) e. O /\ ( ( T .\/ U ) .\/ S ) e. O ) /\ ( ( -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) /\ -. C .<_ ( P .\/ Q ) ) /\ ( -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) /\ -. C .<_ ( S .\/ T ) ) /\ ( C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) /\ C .<_ ( P .\/ S ) ) ) ) /\ ( ( Q .\/ R ) .\/ P ) = ( ( T .\/ U ) .\/ S ) /\ ( ( c e. A /\ d e. A ) /\ -. c .<_ ( ( Q .\/ R ) .\/ P ) /\ ( d =/= c /\ -. d .<_ ( ( Q .\/ R ) .\/ P ) /\ C .<_ ( c .\/ d ) ) ) ) -> E .<_ ( ( ( H .\/ I ) .\/ G ) ./\ ( ( Q .\/ R ) .\/ P ) ) )  | 
						
						
							| 27 | 
							
								16 18 20 26
							 | 
							syl3anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> E .<_ ( ( ( H .\/ I ) .\/ G ) ./\ ( ( Q .\/ R ) .\/ P ) ) )  | 
						
						
							| 28 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 29 | 
							
								28
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> K e. HL )  | 
						
						
							| 30 | 
							
								1 2 3 4 5 6 7 8 9 12
							 | 
							dalem29 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> H e. A )  | 
						
						
							| 31 | 
							
								1 2 3 4 5 6 7 8 9 13
							 | 
							dalem34 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> I e. A )  | 
						
						
							| 32 | 
							
								1 2 3 4 5 6 7 8 9 11
							 | 
							dalem23 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> G e. A )  | 
						
						
							| 33 | 
							
								3 4
							 | 
							hlatjrot | 
							 |-  ( ( K e. HL /\ ( H e. A /\ I e. A /\ G e. A ) ) -> ( ( H .\/ I ) .\/ G ) = ( ( G .\/ H ) .\/ I ) )  | 
						
						
							| 34 | 
							
								29 30 31 32 33
							 | 
							syl13anc | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( H .\/ I ) .\/ G ) = ( ( G .\/ H ) .\/ I ) )  | 
						
						
							| 35 | 
							
								1 3 4
							 | 
							dalemqrprot | 
							 |-  ( ph -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) )  | 
						
						
							| 36 | 
							
								35 8
							 | 
							eqtr4di | 
							 |-  ( ph -> ( ( Q .\/ R ) .\/ P ) = Y )  | 
						
						
							| 37 | 
							
								36
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( Q .\/ R ) .\/ P ) = Y )  | 
						
						
							| 38 | 
							
								34 37
							 | 
							oveq12d | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( H .\/ I ) .\/ G ) ./\ ( ( Q .\/ R ) .\/ P ) ) = ( ( ( G .\/ H ) .\/ I ) ./\ Y ) )  | 
						
						
							| 39 | 
							
								38 14
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> ( ( ( H .\/ I ) .\/ G ) ./\ ( ( Q .\/ R ) .\/ P ) ) = B )  | 
						
						
							| 40 | 
							
								27 39
							 | 
							breqtrd | 
							 |-  ( ( ph /\ Y = Z /\ ps ) -> E .<_ B )  |