Step |
Hyp |
Ref |
Expression |
1 |
|
dalem.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem.ps |
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
6 |
|
dalem60.m |
|- ./\ = ( meet ` K ) |
7 |
|
dalem60.o |
|- O = ( LPlanes ` K ) |
8 |
|
dalem60.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
9 |
|
dalem60.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
10 |
|
dalem60.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
11 |
|
dalem60.e |
|- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
12 |
|
dalem60.g |
|- G = ( ( c .\/ P ) ./\ ( d .\/ S ) ) |
13 |
|
dalem60.h |
|- H = ( ( c .\/ Q ) ./\ ( d .\/ T ) ) |
14 |
|
dalem60.i |
|- I = ( ( c .\/ R ) ./\ ( d .\/ U ) ) |
15 |
|
dalem60.b1 |
|- B = ( ( ( G .\/ H ) .\/ I ) ./\ Y ) |
16 |
1 2 3 4 5 6 7 8 9 10 12 13 14 15
|
dalem57 |
|- ( ( ph /\ Y = Z /\ ps ) -> D .<_ B ) |
17 |
1 2 3 4 5 6 7 8 9 11 12 13 14 15
|
dalem58 |
|- ( ( ph /\ Y = Z /\ ps ) -> E .<_ B ) |
18 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
19 |
18
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. Lat ) |
20 |
1 2 3 4 6 7 8 9 10
|
dalemdea |
|- ( ph -> D e. A ) |
21 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
22 |
21 4
|
atbase |
|- ( D e. A -> D e. ( Base ` K ) ) |
23 |
20 22
|
syl |
|- ( ph -> D e. ( Base ` K ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> D e. ( Base ` K ) ) |
25 |
1 2 3 4 6 7 8 9 11
|
dalemeea |
|- ( ph -> E e. A ) |
26 |
21 4
|
atbase |
|- ( E e. A -> E e. ( Base ` K ) ) |
27 |
25 26
|
syl |
|- ( ph -> E e. ( Base ` K ) ) |
28 |
27
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> E e. ( Base ` K ) ) |
29 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
30 |
1 2 3 4 5 6 29 7 8 9 12 13 14 15
|
dalem53 |
|- ( ( ph /\ Y = Z /\ ps ) -> B e. ( LLines ` K ) ) |
31 |
21 29
|
llnbase |
|- ( B e. ( LLines ` K ) -> B e. ( Base ` K ) ) |
32 |
30 31
|
syl |
|- ( ( ph /\ Y = Z /\ ps ) -> B e. ( Base ` K ) ) |
33 |
21 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( D e. ( Base ` K ) /\ E e. ( Base ` K ) /\ B e. ( Base ` K ) ) ) -> ( ( D .<_ B /\ E .<_ B ) <-> ( D .\/ E ) .<_ B ) ) |
34 |
19 24 28 32 33
|
syl13anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( D .<_ B /\ E .<_ B ) <-> ( D .\/ E ) .<_ B ) ) |
35 |
16 17 34
|
mpbi2and |
|- ( ( ph /\ Y = Z /\ ps ) -> ( D .\/ E ) .<_ B ) |
36 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
37 |
36
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> K e. HL ) |
38 |
1 2 3 4 6 7 8 9 10 11
|
dalemdnee |
|- ( ph -> D =/= E ) |
39 |
3 4 29
|
llni2 |
|- ( ( ( K e. HL /\ D e. A /\ E e. A ) /\ D =/= E ) -> ( D .\/ E ) e. ( LLines ` K ) ) |
40 |
36 20 25 38 39
|
syl31anc |
|- ( ph -> ( D .\/ E ) e. ( LLines ` K ) ) |
41 |
40
|
3ad2ant1 |
|- ( ( ph /\ Y = Z /\ ps ) -> ( D .\/ E ) e. ( LLines ` K ) ) |
42 |
2 29
|
llncmp |
|- ( ( K e. HL /\ ( D .\/ E ) e. ( LLines ` K ) /\ B e. ( LLines ` K ) ) -> ( ( D .\/ E ) .<_ B <-> ( D .\/ E ) = B ) ) |
43 |
37 41 30 42
|
syl3anc |
|- ( ( ph /\ Y = Z /\ ps ) -> ( ( D .\/ E ) .<_ B <-> ( D .\/ E ) = B ) ) |
44 |
35 43
|
mpbid |
|- ( ( ph /\ Y = Z /\ ps ) -> ( D .\/ E ) = B ) |