Step |
Hyp |
Ref |
Expression |
1 |
|
dalem62.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalem62.l |
|- .<_ = ( le ` K ) |
3 |
|
dalem62.j |
|- .\/ = ( join ` K ) |
4 |
|
dalem62.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem62.m |
|- ./\ = ( meet ` K ) |
6 |
|
dalem62.o |
|- O = ( LPlanes ` K ) |
7 |
|
dalem62.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
8 |
|
dalem62.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
9 |
|
dalem62.d |
|- D = ( ( P .\/ Q ) ./\ ( S .\/ T ) ) |
10 |
|
dalem62.e |
|- E = ( ( Q .\/ R ) ./\ ( T .\/ U ) ) |
11 |
|
dalem62.f |
|- F = ( ( R .\/ P ) ./\ ( U .\/ S ) ) |
12 |
|
biid |
|- ( ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
13 |
1 2 3 4 12 6 7 8
|
dalem20 |
|- ( ( ph /\ Y = Z ) -> E. c E. d ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
14 |
1 2 3 4 12 5 6 7 8 9 10 11
|
dalem61 |
|- ( ( ph /\ Y = Z /\ ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) -> F .<_ ( D .\/ E ) ) |
15 |
14
|
3expia |
|- ( ( ph /\ Y = Z ) -> ( ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) -> F .<_ ( D .\/ E ) ) ) |
16 |
15
|
exlimdvv |
|- ( ( ph /\ Y = Z ) -> ( E. c E. d ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) -> F .<_ ( D .\/ E ) ) ) |
17 |
13 16
|
mpd |
|- ( ( ph /\ Y = Z ) -> F .<_ ( D .\/ E ) ) |