Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem6.o |
|- O = ( LPlanes ` K ) |
6 |
|
dalem6.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
7 |
|
dalem6.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
8 |
|
dalem6.w |
|- W = ( Y .\/ C ) |
9 |
1 2 3 4 5 6 7 8
|
dalem6 |
|- ( ph -> S .<_ W ) |
10 |
1 2 3 4 5 6 7 8
|
dalem7 |
|- ( ph -> T .<_ W ) |
11 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
12 |
1 4
|
dalemseb |
|- ( ph -> S e. ( Base ` K ) ) |
13 |
1 4
|
dalemteb |
|- ( ph -> T e. ( Base ` K ) ) |
14 |
1 5
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
15 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
16 3
|
latjcl |
|- ( ( K e. Lat /\ Y e. ( Base ` K ) /\ C e. ( Base ` K ) ) -> ( Y .\/ C ) e. ( Base ` K ) ) |
18 |
11 14 15 17
|
syl3anc |
|- ( ph -> ( Y .\/ C ) e. ( Base ` K ) ) |
19 |
8 18
|
eqeltrid |
|- ( ph -> W e. ( Base ` K ) ) |
20 |
16 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( S .<_ W /\ T .<_ W ) <-> ( S .\/ T ) .<_ W ) ) |
21 |
11 12 13 19 20
|
syl13anc |
|- ( ph -> ( ( S .<_ W /\ T .<_ W ) <-> ( S .\/ T ) .<_ W ) ) |
22 |
9 10 21
|
mpbi2and |
|- ( ph -> ( S .\/ T ) .<_ W ) |
23 |
1 2 3 4 5 6 8
|
dalem5 |
|- ( ph -> U .<_ W ) |
24 |
1 3 4
|
dalemsjteb |
|- ( ph -> ( S .\/ T ) e. ( Base ` K ) ) |
25 |
1 4
|
dalemueb |
|- ( ph -> U e. ( Base ` K ) ) |
26 |
16 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( S .\/ T ) .<_ W /\ U .<_ W ) <-> ( ( S .\/ T ) .\/ U ) .<_ W ) ) |
27 |
11 24 25 19 26
|
syl13anc |
|- ( ph -> ( ( ( S .\/ T ) .<_ W /\ U .<_ W ) <-> ( ( S .\/ T ) .\/ U ) .<_ W ) ) |
28 |
22 23 27
|
mpbi2and |
|- ( ph -> ( ( S .\/ T ) .\/ U ) .<_ W ) |
29 |
7 28
|
eqbrtrid |
|- ( ph -> Z .<_ W ) |