| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalema.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalemc.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalemc.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalemc.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem6.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem6.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem6.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem6.w | 
							 |-  W = ( Y .\/ C )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7 8
							 | 
							dalem6 | 
							 |-  ( ph -> S .<_ W )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8
							 | 
							dalem7 | 
							 |-  ( ph -> T .<_ W )  | 
						
						
							| 11 | 
							
								1
							 | 
							dalemkelat | 
							 |-  ( ph -> K e. Lat )  | 
						
						
							| 12 | 
							
								1 4
							 | 
							dalemseb | 
							 |-  ( ph -> S e. ( Base ` K ) )  | 
						
						
							| 13 | 
							
								1 4
							 | 
							dalemteb | 
							 |-  ( ph -> T e. ( Base ` K ) )  | 
						
						
							| 14 | 
							
								1 5
							 | 
							dalemyeb | 
							 |-  ( ph -> Y e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								1 4
							 | 
							dalemceb | 
							 |-  ( ph -> C e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 17 | 
							
								16 3
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ Y e. ( Base ` K ) /\ C e. ( Base ` K ) ) -> ( Y .\/ C ) e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								11 14 15 17
							 | 
							syl3anc | 
							 |-  ( ph -> ( Y .\/ C ) e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								8 18
							 | 
							eqeltrid | 
							 |-  ( ph -> W e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								16 2 3
							 | 
							latjle12 | 
							 |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ T e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( S .<_ W /\ T .<_ W ) <-> ( S .\/ T ) .<_ W ) )  | 
						
						
							| 21 | 
							
								11 12 13 19 20
							 | 
							syl13anc | 
							 |-  ( ph -> ( ( S .<_ W /\ T .<_ W ) <-> ( S .\/ T ) .<_ W ) )  | 
						
						
							| 22 | 
							
								9 10 21
							 | 
							mpbi2and | 
							 |-  ( ph -> ( S .\/ T ) .<_ W )  | 
						
						
							| 23 | 
							
								1 2 3 4 5 6 8
							 | 
							dalem5 | 
							 |-  ( ph -> U .<_ W )  | 
						
						
							| 24 | 
							
								1 3 4
							 | 
							dalemsjteb | 
							 |-  ( ph -> ( S .\/ T ) e. ( Base ` K ) )  | 
						
						
							| 25 | 
							
								1 4
							 | 
							dalemueb | 
							 |-  ( ph -> U e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								16 2 3
							 | 
							latjle12 | 
							 |-  ( ( K e. Lat /\ ( ( S .\/ T ) e. ( Base ` K ) /\ U e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( ( S .\/ T ) .<_ W /\ U .<_ W ) <-> ( ( S .\/ T ) .\/ U ) .<_ W ) )  | 
						
						
							| 27 | 
							
								11 24 25 19 26
							 | 
							syl13anc | 
							 |-  ( ph -> ( ( ( S .\/ T ) .<_ W /\ U .<_ W ) <-> ( ( S .\/ T ) .\/ U ) .<_ W ) )  | 
						
						
							| 28 | 
							
								22 23 27
							 | 
							mpbi2and | 
							 |-  ( ph -> ( ( S .\/ T ) .\/ U ) .<_ W )  | 
						
						
							| 29 | 
							
								7 28
							 | 
							eqbrtrid | 
							 |-  ( ph -> Z .<_ W )  |