| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalema.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalemc.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalemc.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalemc.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem9.o | 
							 |-  O = ( LPlanes ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							dalem9.v | 
							 |-  V = ( LVols ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							dalem9.y | 
							 |-  Y = ( ( P .\/ Q ) .\/ R )  | 
						
						
							| 8 | 
							
								
							 | 
							dalem9.z | 
							 |-  Z = ( ( S .\/ T ) .\/ U )  | 
						
						
							| 9 | 
							
								
							 | 
							dalem9.w | 
							 |-  W = ( Y .\/ C )  | 
						
						
							| 10 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ Y =/= Z ) -> K e. HL )  | 
						
						
							| 12 | 
							
								1
							 | 
							dalemyeo | 
							 |-  ( ph -> Y e. O )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ph /\ Y =/= Z ) -> Y e. O )  | 
						
						
							| 14 | 
							
								1 2 3 4 5 7
							 | 
							dalemcea | 
							 |-  ( ph -> C e. A )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ph /\ Y =/= Z ) -> C e. A )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 7 8
							 | 
							dalem-cly | 
							 |-  ( ( ph /\ Y =/= Z ) -> -. C .<_ Y )  | 
						
						
							| 17 | 
							
								2 3 4 5 6
							 | 
							lvoli3 | 
							 |-  ( ( ( K e. HL /\ Y e. O /\ C e. A ) /\ -. C .<_ Y ) -> ( Y .\/ C ) e. V )  | 
						
						
							| 18 | 
							
								11 13 15 16 17
							 | 
							syl31anc | 
							 |-  ( ( ph /\ Y =/= Z ) -> ( Y .\/ C ) e. V )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eqeltrid | 
							 |-  ( ( ph /\ Y =/= Z ) -> W e. V )  |