Metamath Proof Explorer


Theorem dalem9

Description: Lemma for dath . Since -. C .<_ Y , the join Y .\/ C forms a 3-dimensional space. (Contributed by NM, 20-Jul-2012)

Ref Expression
Hypotheses dalema.ph
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
dalemc.l
|- .<_ = ( le ` K )
dalemc.j
|- .\/ = ( join ` K )
dalemc.a
|- A = ( Atoms ` K )
dalem9.o
|- O = ( LPlanes ` K )
dalem9.v
|- V = ( LVols ` K )
dalem9.y
|- Y = ( ( P .\/ Q ) .\/ R )
dalem9.z
|- Z = ( ( S .\/ T ) .\/ U )
dalem9.w
|- W = ( Y .\/ C )
Assertion dalem9
|- ( ( ph /\ Y =/= Z ) -> W e. V )

Proof

Step Hyp Ref Expression
1 dalema.ph
 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )
2 dalemc.l
 |-  .<_ = ( le ` K )
3 dalemc.j
 |-  .\/ = ( join ` K )
4 dalemc.a
 |-  A = ( Atoms ` K )
5 dalem9.o
 |-  O = ( LPlanes ` K )
6 dalem9.v
 |-  V = ( LVols ` K )
7 dalem9.y
 |-  Y = ( ( P .\/ Q ) .\/ R )
8 dalem9.z
 |-  Z = ( ( S .\/ T ) .\/ U )
9 dalem9.w
 |-  W = ( Y .\/ C )
10 1 dalemkehl
 |-  ( ph -> K e. HL )
11 10 adantr
 |-  ( ( ph /\ Y =/= Z ) -> K e. HL )
12 1 dalemyeo
 |-  ( ph -> Y e. O )
13 12 adantr
 |-  ( ( ph /\ Y =/= Z ) -> Y e. O )
14 1 2 3 4 5 7 dalemcea
 |-  ( ph -> C e. A )
15 14 adantr
 |-  ( ( ph /\ Y =/= Z ) -> C e. A )
16 1 2 3 4 5 7 8 dalem-cly
 |-  ( ( ph /\ Y =/= Z ) -> -. C .<_ Y )
17 2 3 4 5 6 lvoli3
 |-  ( ( ( K e. HL /\ Y e. O /\ C e. A ) /\ -. C .<_ Y ) -> ( Y .\/ C ) e. V )
18 11 13 15 16 17 syl31anc
 |-  ( ( ph /\ Y =/= Z ) -> ( Y .\/ C ) e. V )
19 9 18 eqeltrid
 |-  ( ( ph /\ Y =/= Z ) -> W e. V )