Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | da.ps0 | |- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
|
da.a1 | |- A = ( Atoms ` K ) |
||
Assertion | dalemcceb | |- ( ps -> c e. ( Base ` K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | |- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) ) |
|
2 | da.a1 | |- A = ( Atoms ` K ) |
|
3 | 1 | dalemccea | |- ( ps -> c e. A ) |
4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
5 | 4 2 | atbase | |- ( c e. A -> c e. ( Base ` K ) ) |
6 | 3 5 | syl | |- ( ps -> c e. ( Base ` K ) ) |