Metamath Proof Explorer


Theorem dalemcceb

Description: Lemma for dath . Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses da.ps0
|- ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )
da.a1
|- A = ( Atoms ` K )
Assertion dalemcceb
|- ( ps -> c e. ( Base ` K ) )

Proof

Step Hyp Ref Expression
1 da.ps0
 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )
2 da.a1
 |-  A = ( Atoms ` K )
3 1 dalemccea
 |-  ( ps -> c e. A )
4 eqid
 |-  ( Base ` K ) = ( Base ` K )
5 4 2 atbase
 |-  ( c e. A -> c e. ( Base ` K ) )
6 3 5 syl
 |-  ( ps -> c e. ( Base ` K ) )