Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem1.o |
|- O = ( LPlanes ` K ) |
6 |
|
dalem1.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
7 |
1
|
dalemkeop |
|- ( ph -> K e. OP ) |
8 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
9 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
10 |
1 2 3 4 5 6
|
dalempjsen |
|- ( ph -> ( P .\/ S ) e. ( LLines ` K ) ) |
11 |
1
|
dalemqea |
|- ( ph -> Q e. A ) |
12 |
1
|
dalemtea |
|- ( ph -> T e. A ) |
13 |
1 2 3 4 5 6
|
dalemqnet |
|- ( ph -> Q =/= T ) |
14 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
15 |
3 4 14
|
llni2 |
|- ( ( ( K e. HL /\ Q e. A /\ T e. A ) /\ Q =/= T ) -> ( Q .\/ T ) e. ( LLines ` K ) ) |
16 |
9 11 12 13 15
|
syl31anc |
|- ( ph -> ( Q .\/ T ) e. ( LLines ` K ) ) |
17 |
1 2 3 4 5 6
|
dalem1 |
|- ( ph -> ( P .\/ S ) =/= ( Q .\/ T ) ) |
18 |
1
|
dalem-clpjq |
|- ( ph -> -. C .<_ ( P .\/ Q ) ) |
19 |
1 3 4
|
dalempjqeb |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
21 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
22 |
20 2 21
|
op0le |
|- ( ( K e. OP /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( 0. ` K ) .<_ ( P .\/ Q ) ) |
23 |
7 19 22
|
syl2anc |
|- ( ph -> ( 0. ` K ) .<_ ( P .\/ Q ) ) |
24 |
|
breq1 |
|- ( C = ( 0. ` K ) -> ( C .<_ ( P .\/ Q ) <-> ( 0. ` K ) .<_ ( P .\/ Q ) ) ) |
25 |
23 24
|
syl5ibrcom |
|- ( ph -> ( C = ( 0. ` K ) -> C .<_ ( P .\/ Q ) ) ) |
26 |
25
|
necon3bd |
|- ( ph -> ( -. C .<_ ( P .\/ Q ) -> C =/= ( 0. ` K ) ) ) |
27 |
18 26
|
mpd |
|- ( ph -> C =/= ( 0. ` K ) ) |
28 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
29 |
20 28 21
|
opltn0 |
|- ( ( K e. OP /\ C e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) C <-> C =/= ( 0. ` K ) ) ) |
30 |
7 8 29
|
syl2anc |
|- ( ph -> ( ( 0. ` K ) ( lt ` K ) C <-> C =/= ( 0. ` K ) ) ) |
31 |
27 30
|
mpbird |
|- ( ph -> ( 0. ` K ) ( lt ` K ) C ) |
32 |
1
|
dalemclpjs |
|- ( ph -> C .<_ ( P .\/ S ) ) |
33 |
1
|
dalemclqjt |
|- ( ph -> C .<_ ( Q .\/ T ) ) |
34 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
35 |
1
|
dalempea |
|- ( ph -> P e. A ) |
36 |
1
|
dalemsea |
|- ( ph -> S e. A ) |
37 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) ) |
38 |
9 35 36 37
|
syl3anc |
|- ( ph -> ( P .\/ S ) e. ( Base ` K ) ) |
39 |
20 3 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) ) |
40 |
9 11 12 39
|
syl3anc |
|- ( ph -> ( Q .\/ T ) e. ( Base ` K ) ) |
41 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
42 |
20 2 41
|
latlem12 |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) ) -> ( ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) ) <-> C .<_ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) ) |
43 |
34 8 38 40 42
|
syl13anc |
|- ( ph -> ( ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) ) <-> C .<_ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) ) |
44 |
32 33 43
|
mpbi2and |
|- ( ph -> C .<_ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) |
45 |
|
opposet |
|- ( K e. OP -> K e. Poset ) |
46 |
7 45
|
syl |
|- ( ph -> K e. Poset ) |
47 |
20 21
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
48 |
7 47
|
syl |
|- ( ph -> ( 0. ` K ) e. ( Base ` K ) ) |
49 |
20 41
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ ( Q .\/ T ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) e. ( Base ` K ) ) |
50 |
34 38 40 49
|
syl3anc |
|- ( ph -> ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) e. ( Base ` K ) ) |
51 |
20 2 28
|
pltletr |
|- ( ( K e. Poset /\ ( ( 0. ` K ) e. ( Base ` K ) /\ C e. ( Base ` K ) /\ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( lt ` K ) C /\ C .<_ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) -> ( 0. ` K ) ( lt ` K ) ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) ) |
52 |
46 48 8 50 51
|
syl13anc |
|- ( ph -> ( ( ( 0. ` K ) ( lt ` K ) C /\ C .<_ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) -> ( 0. ` K ) ( lt ` K ) ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) ) |
53 |
31 44 52
|
mp2and |
|- ( ph -> ( 0. ` K ) ( lt ` K ) ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) |
54 |
20 28 21
|
opltn0 |
|- ( ( K e. OP /\ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) e. ( Base ` K ) ) -> ( ( 0. ` K ) ( lt ` K ) ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) <-> ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) =/= ( 0. ` K ) ) ) |
55 |
7 50 54
|
syl2anc |
|- ( ph -> ( ( 0. ` K ) ( lt ` K ) ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) <-> ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) =/= ( 0. ` K ) ) ) |
56 |
53 55
|
mpbid |
|- ( ph -> ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) =/= ( 0. ` K ) ) |
57 |
41 21 4 14
|
2llnmat |
|- ( ( ( K e. HL /\ ( P .\/ S ) e. ( LLines ` K ) /\ ( Q .\/ T ) e. ( LLines ` K ) ) /\ ( ( P .\/ S ) =/= ( Q .\/ T ) /\ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) =/= ( 0. ` K ) ) ) -> ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) e. A ) |
58 |
9 10 16 17 56 57
|
syl32anc |
|- ( ph -> ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) e. A ) |
59 |
20 2 21 4
|
leat2 |
|- ( ( ( K e. OP /\ C e. ( Base ` K ) /\ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) e. A ) /\ ( C =/= ( 0. ` K ) /\ C .<_ ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) ) -> C = ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) |
60 |
7 8 58 27 44 59
|
syl32anc |
|- ( ph -> C = ( ( P .\/ S ) ( meet ` K ) ( Q .\/ T ) ) ) |
61 |
60 58
|
eqeltrd |
|- ( ph -> C e. A ) |