| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dalem.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dalem.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							dalem.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							dalem.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							dalem.ps | 
							 |-  ( ps <-> ( ( c e. A /\ d e. A ) /\ -. c .<_ Y /\ ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							dalemkehl | 
							 |-  ( ph -> K e. HL )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ ps ) -> K e. HL )  | 
						
						
							| 8 | 
							
								5
							 | 
							dalemccea | 
							 |-  ( ps -> c e. A )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantl | 
							 |-  ( ( ph /\ ps ) -> c e. A )  | 
						
						
							| 10 | 
							
								5
							 | 
							dalemddea | 
							 |-  ( ps -> d e. A )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							 |-  ( ( ph /\ ps ) -> d e. A )  | 
						
						
							| 12 | 
							
								5
							 | 
							dalemccnedd | 
							 |-  ( ps -> c =/= d )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantl | 
							 |-  ( ( ph /\ ps ) -> c =/= d )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( LLines ` K ) = ( LLines ` K )  | 
						
						
							| 15 | 
							
								3 4 14
							 | 
							llni2 | 
							 |-  ( ( ( K e. HL /\ c e. A /\ d e. A ) /\ c =/= d ) -> ( c .\/ d ) e. ( LLines ` K ) )  | 
						
						
							| 16 | 
							
								7 9 11 13 15
							 | 
							syl31anc | 
							 |-  ( ( ph /\ ps ) -> ( c .\/ d ) e. ( LLines ` K ) )  |