| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
| 2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
| 5 |
1
|
dalemkelat |
|- ( ph -> K e. Lat ) |
| 6 |
1 4
|
dalemceb |
|- ( ph -> C e. ( Base ` K ) ) |
| 7 |
1 4
|
dalemseb |
|- ( ph -> S e. ( Base ` K ) ) |
| 8 |
1 4
|
dalemteb |
|- ( ph -> T e. ( Base ` K ) ) |
| 9 |
|
simp321 |
|- ( ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) -> -. C .<_ ( S .\/ T ) ) |
| 10 |
1 9
|
sylbi |
|- ( ph -> -. C .<_ ( S .\/ T ) ) |
| 11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 12 |
11 2 3
|
latnlej1l |
|- ( ( K e. Lat /\ ( C e. ( Base ` K ) /\ S e. ( Base ` K ) /\ T e. ( Base ` K ) ) /\ -. C .<_ ( S .\/ T ) ) -> C =/= S ) |
| 13 |
5 6 7 8 10 12
|
syl131anc |
|- ( ph -> C =/= S ) |